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Chapter 1

Introduction

Communication and commerce is shifting from the physical world into the
digital world. Because a lot of digital service require personal information,
our identity information is scattered throughout many computer systems.

Companies create databases with customer information to organise and
optimise their transactions. Banks give their customers access to electronic
banking web sites. Governments also provide online services to companies
and citizens.

Such web based services need to know who is accessing them, in order
to personalise the experience, or to present the correct personal information.
Also, privacy protection is a real concern.

Therefore, citizens, governments and companies have a strong need for
identity management, management of (online) identity information.

The first sections of this chapter are an introduction to (federated) iden-
tity management, and show a privacy friendly view on it by means of using
smart cards in idemix. Sections 1.7 and 1.8 contain the main research ques-
tion and the outline of this thesis.

1.1 Identity Management

Management of (online) identity information, or in short, identity manage-
ment, becomes increasingly important in our society.

Unfortunately, there is no unique definition of identity management, but
a definition that works for the context of this thesis is as follows:

Definition 1.1.1 (Identity Management (IM)).
Identity management is the set of processes and techniques to handle identity
information for authentication and authorisation.

1
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In this definition, authentication is the verification of a (digital) identity
and authorisation is the verification whether someone is allowed to undertake
a specific action. What people expect identity management (IM) to do, de-
pends on who it uses. We will distinguish users, companies and governmental
organisations.

For users, identity management will mostly be about convenience and
privacy. Nowadays users have a lot of username-password pairs on the in-
ternet, for convenience it will be better if this amount can be reduced. To
handle with so many usernames and passwords, a user will likely choose the
same username and password on different sites and will also choose easy to
remember passwords.

For users there are also privacy concerns. On websites and in other ways
companies demand a lot of identity information from the users. This certainly
has benefits for the user, as profiling and thus personalisation of services is
possible. On the other hand, the user has no control on what is done with
that information. In the Netherlands data collection is restricted by law,
and although legal actions are possible if a company or the government has
abused your identity information, there is no active inspection on the compa-
nies. In other countries the use of identity information is often less controlled.

For companies, identity management is interesting from the point of
view of information security and efficiency. Identity management has mul-
tiple purposes for companies. Companies provide products or services, and
often have a relationship with their customers (which can be persons or com-
panies) and there is need to identify and keep record of these customers.

Firstly, it is necessary to identify the customer when the company contacts
the customer or when the customer contacts the company. This contact can
be in a digital way, by entering a username and password on the company’s
website or a digital ordering system, but also more physical as by showing an
identity card to enter a restricted area or signing a receipt for packet delivery.

Secondly, managing the identity information of customers in a proper
way increases efficiency for a company, as the company can handle orders
more quickly and accurately. A company that can combine different sources
of information about customers can profile them and give better service to
them. As mentioned earlier, this at the same time raises privacy issues for
the customer.

Also internally, identity management is used as a tool to manage autho-
risations for employees. It can be avoided that an employee needs a bulk of
usernames and passwords to access buildings and (online) applications.
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Governments are interested in identity management in different ways.
The government is a provider of identity documents as passports, identity
cards and driving licenses, but also of identifiers as social security numbers
(or comparable in the Netherlands: sofi-nummers).

Simultaneously, the government provides services to their citizens, to com-
panies and to other organisations for which this identifying information is
needed. To citizens this can be for example the granting of official docu-
ments as passports, parking licenses or tax return forms. Also companies
have to be registered for tax collection or to grant permissions. Moreover,
the government has to make laws about the collection of identity information
and has to regulate it.

To describe identity management we define three different types of par-
ticipants: users, identity providers and service providers. A user is ‘someone’
(which can be a human or a company) who wants to get a service. First,
authentication and authorisation is done by an identity provider. And when
the user is authorised the service is given by the service provider.

In simple (non-federated) identity management, identities are always man-
aged within the same domain as the service is given.

Figure 1.1: Simple Identity Management. A user wants a service from the
service provider. The identity provider in the same domain is involved to
authenticate the identity of the user.
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1.2 Federation

At the moment, there is much attention for Federated Identity Management,
identity management spread over multiple domains. These domains can be
either inside or outside the same organisation.

Within an organisation, federation is used to link different systems that
are needed in processing or for single sign-on applications. Identity manage-
ment that crosses the borders of organisations is used to optimise processes
in which multiple organisations are involved.

Until now there hasn’t been much attention for federation, and the exist-
ing solutions for federated identity management are mostly technical. Within
organisations, federated identity management is already used, but there are
almost no solutions for federation between different organisations.

For federation over different organisations trust and a set of communica-
tion rules are necessary. To accomplish this, a Circle of Trust has to be set
up. Such a circle consists of service providers, identity providers and users.
These providers and users have to trust each other. For users this means that
their privacy is guaranteed and that their information will not be misused.
Service providers want to be sure that the identity providers are reliable and
that the identities they provide are correct and that the users are correctly
authenticated.

A good example of federated identity management is Microsoft Passport.
With Microsoft Passport single sign-on on the chat service MSN messen-
ger and Microsoft web applications such as the email-service Hotmail and
weblog/photo album-service Live Spaces is made possible. The use of this
(federated) identity management system gives convenience to the users, as
they need to log in only once. It was also the purpose of Microsoft that other
service-providers on the internet would use this system to identify their users,
but a lack of trust of the providers with respect to Microsoft worked against
this. The Circle of Trust could not be established by lack of trust. In ret-
rospect we can conclude that Microsoft Passport has been too much about
technology, and too little about trust.

Presently, a lot of parties are interested to become an identity provider.
It is possible that governments will be identity providers, as they have al-
ways been and because they issue identification documents as driving licenses
and passports. But also banks and even telecom providers are in the race.
Banks have a relationship of trust with their customers for years and are
seen as reliable. Telecom providers have less trust in their relationship with
their customers, but because they are very much involved in communica-
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tion between users and service providers, they nevertheless are interesting as
identity provider. Moreover, they have the technology (mobile phone & SIM
card) to authenticate their users reliably.

Is it very well possible that in the future multiple parties will act as
identity provider.

Figure 1.2: Traditional Federated Identity Management. A user wants a
service from a provider in an other domain. The identity provider in the
user’s domain is involved to authenticate the user.

1.3 A privacy-friendly view on IM

The growth of digital commerce and exchange of identity information raises
some problems. First we mention the privacy problem. In most systems
users are expected to hand over a lot of identity information, which will be
stored in databases for a long time. Because identity systems are more and
more linked to each other by means of federation, it is possible to gather
enough identity information of a certain user to make a very detailed profile
of him. So there is a strong loss of privacy.

At the same time identity information, especially on the internet, but not
limited to it, becomes of huge interest to thieves. Digital transactions can
have a high real-world value, and with burglary in only one system a lot of
‘identities’ can be stolen.
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Another problem is the inaccuracy of identity information. As the infor-
mation is scattered throughout many systems, with an update of the infor-
mation there is a high probability that not all information on these systems
will be correctly synchronised.

For that reasons a new approach to identity management is needed. In-
stead of asking a lot of identity information from someone in order to deduce
if he is allowed to perform a certain action or start a transaction, it is better
to check only if the user has the right credentials to perform the action or
transaction. A credential is an attestation of a certain fact about the holder,
issued by a party with an authority or assumed competence to do so. Ex-
amples of credentials are a driving license, a diploma, a proof of citizenship,
something that represents a certain amount of money, etcetera. To show such
credentials it is not necessary to show identifying information. Compare this
to buying something in a store: it is not needed to give your name, but it
suffices to hand over one or more bills. In other words: instead of storing
a lot of data about a user and his credentials on a lot of servers, the user
himself stores this data and these credentials, and only reveals them when
needed.

Therefore we introduce the concept of anonymous credential systems. In
such identity systems there are no identifiers of the specific user needed,
but only credentials suffice to give a user access to a service. The identity
providers do not provide identifying information anymore, but issue creden-
tials instead.

Because it often is useful to keep a relationship between identity provider
and the user or between service provider and the user, it is possible to agree
on an identifying name for that relation, a pseudonym. Therefore anonymous
credential systems can also be called pseudonym systems.

This privacy-friendly view on identity management preserves privacy for
the users and increases the threat of identity theft.

1.4 Laws for successful Identity Management

We have seen that it is better to ask credentials instead of identifying in-
formation from users. Whether or not a (federated) identity management
system will be widely accepted depends a lot on the trust and convenience
experienced by the users and service-providers. In 2005, Seven Laws of Iden-
tity were published as result of a project by Kim Cameron [Cam05]. It is
expected that these laws have to be used as a starting point of an identity
management system to make it successful.
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The seven laws are:

1. User Control and Consent
Digital identity systems must only reveal information identifying a user
with the user’s consent.

2. Limited Disclosure for Limited Use
The solution which discloses the least identifying information and best
limits its use is the most stable, long-term solution.

3. The Law of Fewest Parties
Digital identity systems must limit disclosure of identifying information
to parties having a necessary and justifiable place in a given identity
relationship.

4. Directed Identity
A universal identity metasystem must support both “omnidirectional”
identifiers for use by public entities and “unidirectional” identifiers for
private entities, thus facilitating discovery while preventing unnecessary
release of correlation handles.

5. Pluralism of Operators and Technologies
A universal identity metasystem must channel and enable the inter-
working of multiple identity technologies run by multiple identity providers.

6. Human Integration
A unifying identity metasystem must define the human user as a com-
ponent integrated through protected and unambiguous human-machine
communications.

7. Consistent Experience Across Contexts
A unifying identity metasystem must provide a simple consistent expe-
rience while enabling separation of contexts through multiple operators
and technologies.

The next section introduces idemix, a pseudonym system which respects
the first four laws.

1.5 The pseudonym system idemix

idemix is a pseudonym system developed by IBM Research1. The research of
pseudonym systems and development of idemix is done by, amongst others,
Jan Camenisch and Anna Lysyanskaya.

1http://www.zurich.ibm.com/security/idemix/
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Figure 1.3: Privacy-friendly Federated Identity Management. A credential
issuer provides a credential to the user. This credential suffices for the user
to get service at the service provider.

This system consists of users and organisations. The organisations issue
credentials to the users and/or verify if a user owns specific credentials. We
will call these organisations issuers, respectively verifiers. For organisations it
is possible to be an issuer and a verifier in the same transaction, for example
when issuing a credential requiring another credential.

For a user it is possible to use a pseudonym and to obtain a credential
from an issuing organisation, and later to show this credential to another
organisation while using another pseudonym.

Even if all organisations cooperate, they cannot link a pseudonym under
which a credential is verified to the pseudonym under which it was originally
issued. It is also possible to show a credential several times to the same
organisation, without letting the organisation know that each time this is
done by the same user using the same credential.

In idemix it is impossible to obtain a credential without asking the right
issuer to do so. Counterfeiting therefore is impossible.

When a credential is issued to a user, the credential is bound to a pseudonym.
A credential is bound to a certain user, however an issuer or verifier cannot
see to which user. It is impossible to pass on a credential that is bound to a
pseudonym of a certain user to a pseudonym of a different user.

It is still possible to lend out pseudonyms and credentials to another user,
but idemix has properties that make this very unattractive.
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As we can see, the first four of the Seven Laws are respected by idemix:

1. The user is always needed in transactions where his credentials are
used, and therefore has control and gives consent to the use identifying
information.

2. Pseudonyms and credentials have only to be shown when needed.

3. Only parties that are really needed are involved in a transaction in
idemix.

4. The user can choose a pseudonym for a specific relation which he does
not use elsewhere, so these are unidirectional. Organisations create for
themselves public keys which are omnidirectional.

Because idemix is an identity system that can be implemented in a meta-
system, we cannot apply the fifth law directly on idemix. The human inte-
gration and experience, which the sixth and seventh law focus on, depend
mainly on the implementation.

Therefore, with an appropriate implementation, it is interesting to use
the protocols of idemix as a basis for an identity management system.

1.6 Using a smart card in IM systems

In February 2007, IBM announced a release of idemix as java code in the
open source project Higgins2. Releasing this software with the source code
has several advantages. For example, it is possible to check the code and
compile it yourself, so that it is not possible to place code in it that leaks
information. Software can easily been distributed over the Internet or in
other ways and it can be implemented on very different types of devices, from
desktop computers to cell phones or dedicated devices such as digital wallets.
However, a software only implementation has some unpleasant drawbacks.
The most important of these drawbacks is the problem of the key storage. It
is almost impossible to store secret keys in a software environment without
the danger of loss, theft, modification or unauthorised use. Also keys can be
easily copied and shared with others.

A solution to this is to use a smart card for some parts of the imple-
mentation of idemix. Hopefully we can keep the advantages of the software
implementation and use the smart card to solve some problems of the soft-
ware only implementation.

2http://www.eclipse.org/higgins/
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Figure 1.4: A smart card.

We mention some of the advantages:

• A smart card can be made tamper proof, at least a lot more than
software can be made. So we can store a masterkey in it which can not
be read out or modified and will be made inoperative if someone tries
to modify or read out.

• A smart card can contain a printed name, age, gender and photo and
thus can be bound to a real person.

• A smart card can be centrally distributed by identity providers.

• A smart card can be easily protected against viruses and Trojan horses.

• A smart card can require the user to enter a PIN.

• A smart card is portable.

These advantages and even more are also mentioned by Stefan Brands in
his PhD thesis [Bra00].

Also governments develop electronic identity cards, in most cases as a
smart card. idemix in combination with these electronic identity smart cards
can be used to interact online with governmental organisations. Other or-
ganisations can use idemix in combination with these cards to assure that
there are real persons behind the pseudonyms they know.

This combination of smart cards and idemix would lead to a very secure
and privacy-friendly system for identity management.
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1.7 Implementing a smart card in idemix

The previous sections introduce the pseudonym system idemix and explain
that using a smart card in an identity management system has obvious ad-
vantages. But because idemix uses a lot of heavy mathematical operations
and a smartcard has limitations on its calculation power and storage possi-
bilities, the question remains if it is possible to use smart cards with idemix.
The research I have done at TNO ICT, and what is written in the remaining
part of this thesis, results from the following research question:

In which way can idemix be implemented in a system which makes
use of

1. an electronic identity card (smart card) with limited compu-
tation power and limited memory,

2. a terminal or a system reachable via a terminal with relatively
much computing power and memory,

and where at the same time all necessary secret keys of the citizen
are contained on and handled by the electronic identity card?

1.8 Outline of this thesis

The next chapter gives some preliminaries we need in order to understand
idemix. In Chapter 3 the properties of idemix and the idemix protocol are
introduced and also the building block of idemix are explained there. For
idemix we have to use zero-knowledge proofs of knowledge, which are ex-
plained in the subsequent chapter. In Chapter 5 we investigate if it is possi-
ble to use a smart card and terminal in idemix, as described in the research
question. The conclusions with respect to the research question and some
suggestions for further research are given in the final chapter.

Information about calculating square roots of large numbers, modular
arithmetic on smart cards and state-of-the-art smart card specifications can
be found in the Appendices.
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1.9 TNO exploring Federated Authentication

and Identity Management

This master’s thesis is a result of an internship at TNO ICT in Groningen.
The Netherlands Organisation of Applied Scientific Research (de Neder-

landse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek) is an
independent and non-profit research institute which focuses on the practical
application of scientific knowledge.

Since TNO was established by law in 1930, it has supported compa-
nies, governments and public organisations with innovative and practicable
knowledge. Nowadays TNO has approximately 5000 employees which pro-
vide contract research and specialist consultancy. They also audit and certify
products and services, based on independent and scientifically founded judge-
ments. About 30 percent of the projects are not on contract basis, but are
internal knowledge acquiring projects. This is done in order to keep the
knowledge of the employees up-to-date.

My research is done as a part of the FAIM (Federated Authentication
and Identity Management) project, an internal project of the ICT Security
group to acquire knowledge about identity management and federation. By
keeping this knowledge up-to-date, TNO is able to give the best advice about
identity management and federation to the Dutch government and companies
like the Dutch telecom provider KPN.



Chapter 2

Preliminaries

If we want to understand how idemix (Chapter 3) and zero-knowledge proofs
(Chapter 4) work, we first have to introduce some notation, definitions, as-
sumptions and lemmas. This introduction is done in this chapter.

2.1 Notation

We introduce some notation. It is important to mention that in idemix all
values are represented by bitstrings. Interpreting these as binary numbers,
all considered values are positive integers. When we use the logarithm log,
we mean the binary log, thus log2. When choosing random values, denoted
by ∈R, we also mean integers. Also for intervals, using the notation [a, b]
and (a, b), we mean integer intervals, including respectively excluding the
endpoints.

2.2 Definitions

Definition 2.2.1 (Special RSA modulus). A RSA modulus n=pq is special
if p and q are distinct primes of the form p = 2p′ + 1 and q = 2q′ + 1 where
p′, q′ are also prime numbers.

Definition 2.2.2 (Integers modulo n). The integers modulo n, denoted by
Z/nZ or by Zn, is the set of (equivalence classes of) integers {0, 1, 2, . . . , n−
1}, where m corresponds to the class m + nZ ⊂ Z. If n = p a prime, then
Zp is a field.

Definition 2.2.3 (The unit group Z∗
n). Z∗

n is the group of units of the ring
Zn. To be precise, these are the m ∈ Zn such that gcd(m, n) = 1.

13
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Definition 2.2.4 (Euler totient function). The Euler totient function φ(n)
is the number of positive integers less than or equal to n that are coprime to
n.

Note: φ(n) gives the order of Z∗
n. If n = pq = (2p′ + 1)(2q′ + 1) is a special

RSA modulus, then φ(n) = (p− 1)(q − 1) = 4p′q′.

Definition 2.2.5 (The group of Quadratic Residues QRn). An integer d ∈
Z∗

n is a quadratic residue modulo n, if there exists an integer c such that
c2 ≡ d mod n. All integers satisfying this requirement form the group of
Quadratic Residues QRn ⊂ Z∗

n.

For an extensive introduction see for example chapter 2 of [MOV96],
chapter 11 of [Sch96] or other books and sheets on Number Theory and
Cryptology.

Indistinguishability

The definitions in this section are derived from a paper by Damg̊ard and
Nielsen [DN07].

Consider a probabilistic algorithm U . For every possible string y there is
a probability Ux(y) that y is output when x was the input. We define Ux as
the probability distribution of U ’s output on input x.

Now we define statistical distance:

Definition 2.2.6 (Statistical distance). Given two probability distributions
P, Q, the statistical distance between them is defined to be SD(P, Q) =
∑

y |P (y)−Q(y)|, where P (y) (or Q(y)) is the probability P (or Q) assigns
to y.

Using this, we have

Definition 2.2.7 (Indistinguishability). Given two probabilistic algorithms
(or families of distributions) U, V , we say that

• U, V are perfectly indistinguishable, if Ux = Vx for every x.

• U, V are statistically indistinguishable, if SD(Ux, Vx) ≤ 1/p(|x|) for
every positive polynomial p and every string x of sufficiently large length
|x|.
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• U, V are computationally indistinguishable, if the following holds for
every probabilistic polynomial time algorithm D:
let pU,D(x) be the probability that D outputs “U” as its guess, when
D’s input comes from U , and similarly pV,D(x) be the probability that
D outputs “U” as its guess, when D’s input comes from V. Then
|pU,D(x)−pV,D(x)| ≤ 1/p(|x|) for every positive polynomial p and every
sufficiently large string x.

Loosely speaking, two families of distributions are statistically indistin-
guishable if they are “statistically” so close to each other that nobody can tell
them apart. Two families of distributions can be statistically different, but
if it it unfeasible to detect this in a reasonable amount of time, we call them
computationally indistinguishable. Note that statistical indistinguishability
implies computational indistinguishability.

2.3 Assumptions

The security of idemix is based on the strong RSA assumption and the deci-
sional Diffie-Hellman assumption.

Assumption 2.3.1 (Strong RSA assumption (SRSA assumption)). The fol-
lowing problem, i.e., the flexible RSA problem, is hard to solve: Given a RSA
modulus n of unknown factorisation and a random z ∈ Z∗

n, find r > 1 and
y ∈ Z∗

n such that yr = z.

Assumption 2.3.2 (Decisional Diffie-Hellman assumption (DDH assump-
tion)). Let G be a cyclic group of order q, with generator g. Choose a, b, c ∈R

Zq independently. Then the two probability distributions

〈

ga, gb, gab
〉

and
〈

ga, gb, gc
〉

are computationally indistinguishable.
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2.4 Lemmas

The following lemmas are also found as Lemma 4.1.5, Corollary 4.1.8 and
Lemma 4.1.10 in Lysyanskaya’s PhD thesis [Lys02].

Lemma 2.4.1. Let a composite integer n be given. Given any value x such
that φ(n)|x, one can find a non-trivial divisor of n in probabilistic polynomial
time.

Proof. We distinguish three different cases:

1. n is an even number.

2. n is an odd number and is of the form n = pe, with p an odd prime
and e ≥ 2.

3. n is an odd number and is of the form n = p · q · r, with p, q odd primes
and r a rest.

In the first case, 2 is a non-trivial factor and so we are finished.
Now suppose n is odd and of the form n = pe. Then we can check if k

√
n

is an integer for all possible values of k. Because e
√

n ≥ 3, we know e ≤ log n
log 3

,

thus we only have to try 1 < k ≤
⌊

log n
log 3

⌋

.

The third case is that n consists of at least two different prime factors,
which we call p and q. We remove all even factors from p− 1 and q − 1 by
dividing by 2j with j as large as possible. The results are denoted by p′ and
q′. So let p′ = (p− 1)/2jp, q′ = (q − 1)/2jq be odd integers. Assume without
loss of generality that jp ≤ jq.

Now we can write x = y ·φ(n) = y · (p−1) · (q−1) · r̃ = y · p′ · q′ · r̃ · 2jp+jq ,
for some factor r̃ of φ(n). Define and calculate x′ by removing the factors 2
from x, thus x′ = p′ · q′ · r′ for some odd r′ ≥ 1.

Now select a random u ∈ {1, . . . , n − 1}. If u /∈ Z∗
n, then gcd(u, n) is a

non-trivial factor of n. Thus assume u ∈ Z∗
n and define V := u2jp−1·x′

. (Note
that at this point we do not know the value of jp.)

With probability 1/2, u is a square modulo p, and so

V = u2jp−1·x′

= (v2)2jp−1·x′

= v2jp ·p′·q′·r′ = (vq′r′)p−1 ≡ 1 mod p

With independent and non-negligible probability, u is a generator modulo
q. Because jp ≤ jq, it holds that q − 1 = 2jq · q′ ∤ 2jp−1 · x′ and thus

u2jp−1·x′ 6= 1 mod q.
Therefore, if jp were known, we would get with non-negligible probability

a value V = u2jp−1·x′

mod n such that V ≡ 1 mod p and V 6= 1 mod q, and
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therefore p ≤ gcd(V − 1, n) < n, and so gcd(V − 1, n) is a non-trivial divisor
of n.

Because there are only log n possibilities for jp, we can try them all.

So our algorithm is as follows:
for random u ∈ {0, . . . , n− 1}, we calculate

V0 = ux′

V1 = u2x′

V2 = u22x′

...

Vi = u2ix′

,

and compute gcd(Vi − 1, n).
We do this for 0 ≤ i ≤ log n, and hopefully we have a gcd(Vi−1, n) which

gives a factor of n. Otherwise we try again with another random u.

Lemma 2.4.2. Given a special RSA modulus n, and an integer x such that

gcd(φ(n), x) > 4,

one can efficiently factor n.

Proof. We know that φ(n) = 4p′q′, thus gcd(φ(n), x) > 4 gives us that x
contains p′, q′ or both.

Suppose x contains p′q′, then 4x is a multiple of φ(n), so Lemma 2.4.1
gives us the factors p and q.

Otherwise suppose, without loss of generality, that x contains p′, but
does not contain q′. Then choose u ∈R Zn, define V := u2x and by the same
reasons as in Lemma 2.4.1, V ≡ 1 mod p, V 6= 1 mod q with non-negligible
probability. Therefore p ≤ gcd(V − 1, n) < n, and so gcd(V − 1, n) is a
non-trivial divisor of n.

Lemma 2.4.3. Let a special RSA modulus n = pq, p = 2p′ + 1, q = 2q′ + 1,
be given. Suppose we are given the values u, v ∈ QRn and x, y ∈ Z, x ∤ y
such that vx ≡ uy mod n. Then, values z, w > 1 such that zw ≡ u mod n can
be computed efficiently.

Proof. Let c = gcd(x, y). If gcd(4c, φ(n)) > 4, then by Lemma 2.4.2, we fac-
tor n. Otherwise, because φ(n) = 4p′q′, it must be the case that gcd(c, p′q′) =
1. Therefore, there exists a value d ∈ Z∗

p′q′ such that cd ≡ 1 mod p′q′.
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Note that
vx/c ≡ (vx)d ≡ (uy)d ≡ uy/c mod n.

By the Extended GCD algorithm (see for example [MOV96]), find integers
a and b such that a(x/c) + b(y/c) = gcd(x/c, y/c) = 1.
Let z = uavb mod n. Then

zx/c ≡ ua(x/c)vb(x/c) ≡ ua(x/c)(vx)b/c ≡ ua(x/c)(uy)b/c = ua(x/c)+b(y/c) = u mod n.

From x ∤ y it follows that c = gcd(x, y) < x.
Thus take the integer w = x/c > 1 to obtain

zw = zx/c ≡ u mod n.



Chapter 3

The pseudonym system idemix

In this chapter we describe how idemix works. First we list the required
and desired properties, and after that we look at how these requirements are
mathematically achieved.

In 1985, Chaum introduced the concept of anonymous credential systems
(also called pseudonym systems) [Cha85]. An anonymous credential system
consists of users and organisations. Issuance and verification of credentials is
done by the organisations, while users preserve their anonymity. In brief there
are two requirements for an anonymous credential system, namely security
for the credential issuers and verifiers and privacy for the users. Security for
the issuers and verifiers means that credentials can not be forged by users or
other organisations, even if they work together or launch an adaptive attack1.
Only users that really own credentials can prove ownership to the verifiers. If
users are not allowed to have certain credentials, it must also be impossible
to obtain them by cooperation.

Security can also mean that credentials cannot be shared. This can never
be really guaranteed, because users can give away all there secrets. However,
it can be made very unattractive for users to do so.

At the same time users must stay anonymous (or pseudonymous). That
is, organisations can not find out more information about the user than that
he owns certain credentials. Moreover, pseudonyms and credentials belonging
to a user cannot be linked.

1In an adaptive attack the next step of the attack is adapted accordingly the results of
earlier steps in the attack

19
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idemix is such a pseudonym system, as the basic requirements are fulfilled
by three system properties:

1. Unlinkable pseudonimity
Users use pseudonyms to interact with organisations. Organisations
cannot obtain information about the identity of the users from this
pseudonym. Organisations can neither link two different pseudonyms
to each other, nor link two different uses of a credential bound to a
certain pseudonym. At the same time the pseudonyms are bound to
a user, so users cannot exchange credentials without exposing secret
identity information.

2. Unforgeable pseudonymous credential granting
Using a signature scheme, an organisation can grant credentials by
signing the combination of a pseudonym and a value representing the
credential. In order to sign a credential, the organisation needs to know
only the pseudonym, thus the master key and real identity of the user
remain secret to the organisation.

3. Zero-knowledge credential verification
By using combinations of zero-knowledge proofs of knowledge, the user
can show to an organisation ownership of a credential without revealing
his identity or pseudonym with the issuer.

In order to make the formulas more readable, we use the following letters
in the subscript of the variables: U stands for User, O for Organisation, I for
Issuer and V for Verifier. The combination UO means that it is a variable
of the User to use with a certain Organisation.

3.1 Unlinkable pseudonimity

A pseudonym in idemix has two requirements:

1. The pseudonym has to be binding to the user, so that once the
pseudonym is established, the user bound to it cannot be changed.

2. The pseudonym has to be hiding the user’s identity, so that the or-
ganisation can not link the pseudonym to the real identity or to other
pseudonyms of the same user.

To establish a pseudonym in idemix, we use a commitment scheme to com-
mit to a value hidden to the verifier. Also for executing the zero-knowledge
proofs we need a commitment scheme.
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A commitment scheme has two requirements:

1. The commitment has to be binding to the value for the prover. If
asked to reveal a value that fits the commitment, the prover can not
reveal an other value than the chosen one.

2. The commitment has to be hiding the value for the verifier. This is
defined as: in the view of the verifier all possible chosen values are
equally likely put into the commitment.

Pedersen [Ped92] proved that a commitment of the form

X = gxhy mod p,

where p is a prime number, has the required properties. Here X is the
commitment to x, while y is used as a hiding exponent. The values g and h
are public bases, and also p is public.

Based on this, in idemix the pseudonym is of the form

PUO = axU

O bsUO

O mod nO.

Because the signature scheme used by idemix requires nO to be a special
RSA modulus, our group has a hidden order. That gives some requirements
on aO and bO, as will be mentioned in section 4.3.

3.2 Unforgeable pseudonymous

credential granting

Credential issuers grant credentials to users by signing pairs that consists of a
pseudonym and a value representing the credential. By signing a pseudonym
that hides the user’s master key, the anonimity of the user is preserved. The
choice of a signature scheme makes it impossible to forge these credentials. In
her PhD thesis [Lys02], Lysyanskaya gives a signature scheme that satisfies
the requirements:

Set-up. Choose a special RSA modulus nO = pOqO, pO = 2p′O + 1, qO =
2q′O + 1, with pO, qO, p′O, q′O primes and nO of length ℓn.
Choose aO, bO, dO ∈ QRnO

uniformly at random. Output as public key
PKO = (nO, aO, bO, dO) and keep as secret key SKO = (pO, qO).
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Signing. To sign a pseudonym PUO = axU

O bsUO

O , which hides the user’s
master key xU ∈ [0, 2ℓx) and a credential value, we choose a random
prime 2ℓe−1 < e < 2ℓe of length ℓe = ℓx + 2 and a random number r of
length ℓs = ℓn + ℓx + ℓ, with ℓ a security parameter.

We create a signature on PUO and dO by calculating

c = (PUO br
O dO)d mod nO,

with d such that ed = 1 mod φ(nO).
Output as a signature (c, e, r).

Verification. To verify a signature on a message,
check that ce = axU

O bsUO+r
O dO mod nO and that 2ℓe−1 < e < 2ℓe.

Theorem 3.2.1. This signature scheme is secure (=unforgeable) under the
Strong RSA assumption.

Proof. A proof is given in detail in a paper of Camenisch and Lysyanskaya
[CL02], and in Lysyankaya’s PhD thesis [Lys02].

We see that a credential is a triple (c, e, r) that satisfies the following
equation:

ce = PUO br
O dO mod nO.

3.3 Zero-knowledge credential verification

In idemix a user can prove ownership of a credential, and also that both the
credential and the pseudonym by which the user is known to the verifier are
bound to the same master key.

This is done by using combinations of zero-knowledge proofs of knowledge.
These proofs prove only the knowledge of credential and pseudonym values,
without giving away information about the actual values. More detailed
information about these proofs can be found in the next chapter. It is shown
there that verification always succeeds if the prover has knowledge of the
values, but if he does not know the values, he only succeeds with negligible
probability.
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3.3.1 Notation of zero-knowledge proofs of knowledge

Camenisch and Stadler [CS97] have introduced a notation for zero-knowledge
proofs of knowledge. This notation makes clear which knowledge is proven,
while hiding the technical details of the underlying mathematics. Because
the combinations of basic zero-knowledge proof of knowledge in idemix are
very complex, this notation helps us to clarify the protocols given in the next
sections.

The notation is explained by an example: a proof of knowledge, denoted
by

PK
{

(α, β) : y = gα mod n ∧ z = gβhα mod n ∧ α ∈ A
}

,

means a zero-knowledge proof of knowledge of of the discrete logarithm of y to
the base g and of a representation of z to the bases g and h, and additionally
the discrete logarithm of the h-part of the representation has to be equal to
the discrete logarithm of y to the base g and has to lie in the interval A.
This is equal of proving knowledge of the values of the greek letters in the
equations on the right side of the colon. Throughout this document, we use
small greek letters for the elements whose knowledge has to be proven and
all other letters denote elements that are known to both the prover and the
verifier.

To preserve clarity of the notation, the modulus will not be mentioned
when it follows directly from the context. Whenever we mention a proof of
knowledge in this thesis, we mean a zero-knowledge proof of knowledge.

3.4 Basic actions

The basic version of idemix consists of five actions. SetUp lets a user or
organisation enter the system. FormNym lets a user and organisation generate
a pseudonym for the user. With GrantCred, an organisation can grant a
credential to a user. Ownership of a credential can be verified with VerifyCred.
And by executing VerifyCredOnNym it can be verified that the user owns a
credential that is bound to the user which is hidden in a certain pseudonym.

To obtain the non-basic properties of idemix, a number of additional ac-
tions and modifications of the basic ones are used. These are not discussed
in this thesis; we refer to [CL01a] for details on them.
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For each action we will do an analysis on its time complexity. As we can
see in Appendix B, calculation complexity mainly depends on the number of
exponentiations. We use this number here as a unit of time. How much time
an exponentiation costs on a state-of-the-art smart card can be found in the
afore mentioned appendix.

A zero-knowledge proof of knowledge also involves exponentiations. For
each exponent the user wants to prove knowledge of, he has to do an expo-
nentiation. We will explain this in Chapter 4.

Interval proofs also need exponentiations. However, the number of expo-
nentiations needed here depends on properties of the interval and the precise
form of the interval proof. So here we only count the number of interval
proofs.

3.4.1 System initialisation

When initializing the system, a central party has to choose appropriate values
for the parameters ℓn, ℓx, ℓe and ℓs. Here ℓn denotes the bitlength of n (etc.)
The security of the system depends on the choice of these parameters. See
section 3.5 for some possible choices.

3.4.2 Entering the system

When entering the system, an organisation has to choose a public and a se-
cret key. If a user enters the system, he must choose a master key.

SetUp(O) Setup phase for an organisation

1. O chooses primes p′O and q′O ∈R [2ℓn/2−2, 2ℓn/2−1), such that pO = 2p′O+1
and qO = 2q′O + 1 are prime. O sets modulus nO = pOqO. Now nO is a
ℓn-bit special RSA modulus with large factors.

2. O chooses random aO, bO, dO, gO, hO ∈ QRnO
.

3. O stores SKO = (pO, qO) as a secret key and publishes
PKO = (nO, aO, bO, dO, gO, hO) as his public key.

SetUp(U) Setup phase for a user
The user chooses a master key xU ∈R [0, 2ℓx).

Security Remark

Note that for security of the signature scheme, the values aO, bO, dO, gO and
hO have to be elements in the group of quadratic residues modulo nO, i.e.,
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in QRnO
. This has to be proven in each function and can be done by an

extra zero-knowledge proof of knowledge. However, this can be avoided by
executing the proof of knowledge with squared bases. For example, executing

PK
{

(α) : y2 = (g2)α
}

instead of PK
{

(α) : y = gα
}

.

Analysis

Finding the safe primes pO and qO can take some time on a standard desktop
pc. A probabilistic primality test for values of this size take for example
about a minute. More robust primality tests take a multiple of this, but it
can be done within an hour. Because this only has to be done at the setup
phase, it does not influence the speed of the system.

3.4.3 Generating a pseudonym

In order to obtain a credential, a pseudonym by which the user is known to
the organisation must be established first.

FormNym(U, O)
At the start of this protocol the user has his master key xU and both par-
ties have the public key of the organisation. After execution a pseudonym
PUO = axU

O bsUO

O will be established. Both parties store PUO. The values xU

and sUO are only known by the user.

1. U chooses sUO ∈ [0, 2ℓn) and sets PUO = axU

O bsUO

O mod nO and sends
PUO to O.

2. U proves to knowledge of the master key and the blinding exponent
to O. He also proves that the master key is chosen from the correct
interval. This is done by executing

PK
{

(α, β) : P 2
UO = (a2

O)α(b2
O)β ∧ α ∈ [0, 2ℓx) ∧ β ∈ [0, 2ℓn)

}

.

3. Both parties store PUO and the user U also stores sUO.

Analysis

By setting the pseudonym the user does a ℓx-bit and a ℓn-bit modular ex-
ponentiation. For the proof of knowledge the user also has to do 2 modular
exponentiations. Moreover, 2 interval proofs are needed.
Totals: 4 exponentiations, 2 interval proofs.
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3.4.4 Granting a credential

A credential is granted by signing a pseudonym in combination with a value
representing the credential.

GrantCred(PUO, O)
At the start of this protocol the organisation knows the user under a pseudonym.
After execution the user has gotten a triple (cUO, eUO, rUO) as a signature on
the tuple (PUO, dO).

1. U sends PUO to O and proves knowledge of the master key (and thus
ownership of the pseudonym) by executing

PK
{

(α, β) : P 2
UO = (a2

O)α(b2
O)β

}

.

2. O chooses a random prime eUO ∈ [2ℓe−1, 2ℓe) and a random rUO ∈
[0, 2ℓs) and computes

cUO = (PUO brUO

O dO)1/eUO mod nO.

O sends the triple (cUO, eUO, rUO) to U .

3. U verifies that ceUO

UO = PUO brUO

O dO mod nO and that eUO ∈ [2ℓe−1, 2ℓe).

4. U and O store the triple.

Analysis

The user has to prove knowledge of the exponents in the pseudonyms and
therefore has to do 2 modular exponentiations. For verification of the cre-
dential triple, the user must calculate 2 exponentiations.
Totals: 4 exponentiations.

3.4.5 Verifying a credential

Verification of ownership of a credential is done by verifying that the user
knows all necessary values.

VerifyCred(O, PUO)
At the start of this protocol the user and the verifying organisation know
the public key of the issuing organisation, the user also has a tuple (xU ,sUO)
which defines the pseudonym PUO and a triple (cUO, eUO, rUO) as a signature
on the pseudonym and the credential.
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1. U chooses r1, r2 ∈ [0, 22ℓn), computes A = cUOhr1

O mod nO and B =
gr2

O hr1

O mod nO and sends the results to V .

2. U proves knowledge of the exponents in the pseudonym and knowledge
of a signature by executing

PK
{

(α, β, γ, δ, ǫ, ζ, ξ) : d2
O = (A2)α(

1

a2
O

)β(
1

b2
O

)γ(
1

h2
O

)δ ∧

B2 = (h2
O)ǫ(g2

O)ζ ∧ 1 = (B2)α(
1

h2
O

)δ(
1

g2
O

)ξ ∧

β ∈ [0, 2ℓx) ∧ γ ∈ [0, 2ℓn) ∧ α ∈ [2ℓe−1, 2ℓe)
}

.

Explanation of the proof of knowledge

The user has to prove ownership of a credential triple (cUO, eUO, rUO), such
that ceUO

UO = axU

O bsUO+rUO

O dO mod nO. Because we can only prove knowledge
of exponents with our zero-knowledge proofs of knowledge and do not want
to give away information about cUO, we first have to make a new hiding
commitment to the value of cUO. This is done by calculating and sending
A = cUO hr1

O mod nO. Then we can prove that we know the exponents in

AeUO = ceUO

UO hr1·eUO

O = axU

O bsUO+rUO

O dOhz
O mod nO, z = r1 · eUO,

and that xU and eUO lie in the right intervals. All this can be done by the
following proof of knowledge:

PK
{

(α, β, γ, δ, ǫ, ζ, ξ) : d2
O = (A2)α(

1

a2
O

)β(
1

b2
O

)γ(
1

h2
O

)δ∧

β ∈ [0, 2ℓx) ∧ γ ∈ [0, 2ℓn) ∧ α ∈ [2ℓe−1, 2ℓe)
}

. (∗)

To guarantee soundness of the proof above, we also have to check that the
power of hO is constructed in the right way, i.e., z = r1 · eUO. Therefore we
have to make a commitment to r1 in advance, by calculating and sending
B = gr2

O hr1

O . To prove the right construction of z, we prove knowledge of r1

by the zero-knowledge proof of knowledge

PK
{

(ǫ, ζ) : B2 = (h2
O)ǫ(g2

O)ζ
}

,

and we prove the right construction by proving that BeUO = hr1·eUO

O gr2·eUO

O =
hz

Ogr2·eUO

O , which can be done by executing

PK
{

(α, δ, ξ) : 1 = (B2)α(
1

h2
O

)δ(
1

g2
O

)ξ
}

,

where α and δ has to be proven to be equal to the α, resp. δ, in the first
proof (∗).
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Analysis

In the first step, the user has to do 2 times a 2ℓn-bit exponentiation. For
proving knowledge of the exponents in the signature and knowledge of the
signature, the user must exponentiate 8 times and do 3 interval proofs.
Totals: 10 exponentiations, 3 interval proofs.

3.4.6 Verifying a credential on a pseudonym

To preserve unlinkeability, the pseudonym to which a credential is granted
will not be shown to the verifier. However, if the user is known to the verifier
by a (different) pseudonym, the user can prove that this pseudonym and the
credential are bound to the same master key. This is done by an extension
of VerifyCred.

VerifyCredOnNym(I, PUI, PUV, V)
At the start of this protocol the user and the verifying organisation know the
public key of the issuing organisation and a pseudonym by which the user
is known to the verifying organisation. The user also has a master key xU ,
values sUI and sUV which define the pseudonyms PUI and PUV and a triple
(cUI , eUI , rUI) as a signature on the pseudonym and credential.

1. U chooses r1, r2 ∈ [0, 22ℓn), computes A = cUIh
r1

I mod nI and B =
gr2

I hr1

I mod nI and sends the results to V .

2. U proves knowledge of the exponents in the pseudonym and knowledge
of a signature by executing

PK
{

(α, β, γ, δ, ǫ, ζ, ξ, η) : d2
I = (A2)α(

1

a2
I

)β(
1

b2
I

)γ(
1

h2
I

)δ ∧

B2 = (h2
I)

ǫ(g2
I )

ζ ∧ 1 = (B2)α(
1

h2
I

)δ(
1

g2
I

)ξ ∧

P 2
UV = (a2

V )β(b2
V )η mod nV ∧

β ∈ [0, 2ℓx) ∧ γ ∈ [0, 2ℓn) ∧ α ∈ [2ℓe−1, 2ℓe)
}

.

Analysis

In the first step, the user has to do 2 times a 2ℓn-bit exponentiation. For
proving knowledge of the exponents in the signature and knowledge of the
signature, the user must exponentiate 10 times and do 3 interval proofs.
Totals: 12 exponentiations, 3 interval proofs.
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3.5 System parameters

Having defined the basic actions in idemix, we now discuss the common
system parameters.

The system is based on RSA-signatures, so its security depends on prop-
erties of the modulus n. This should be a special RSA-modulus of length
ℓn. The value ℓn = 2048 is considered secure till the year 2020. (The value
ℓn = 1024 is expected to become insecure this year.)

The set from which a user’s master key xu is chosen, has to be large
enough to make the probability of collisions negligible. Therefore we choose
its bitlength ℓx = 160.

For secure signing (as described in section 3.2), we also have to calculate
ℓe = ℓx + 2 and ℓs = ℓn + ℓx + ℓ, where ℓ is a security parameter. The
value of ℓ is chosen such that the simulated distribution in the proof of
security is statistically close to the actual distribution. So we choose ℓ =
160. For details on this, we refer to [Lys02]. It follows that ℓe = 162 and
ℓs = 2048 + 160 + 160 = 2368.
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Chapter 4

Zero-knowledge proofs

The previous chapter showed how zero-knowledge proofs are used by idemix
to generate pseudonyms and issue and verify credentials. Here we discuss
how these proofs are implemented.

4.1 Zero-knowledge proof

A zero-knowledge proof is a special case of interactive proof systems.
A definition of interactive proof systems is given by [Gol04]:

Definition 4.1.1. An interactive proof system for a set S is a two-party
game, between a verifier executing a probabilistic polynomial-time strategy
(denoted V ) and a prover which executes a computationally unbounded strat-
egy (denoted P ), satisfying

Completeness For every x ∈ S the verifier V always accepts after inter-
acting with the prover P on common input x.

Soundness For some positive polynomial p, it holds that for every x /∈ S
and every potential strategy P ∗, the verifier V rejects with probability
at least 1− (1/p(|x|)), after interacting with P ∗ on common input x.

We deduce the definition of zero-knowledge interactive proof systems from
the definitions by [Gol04] and [DN07]:

Definition 4.1.2. An interactive proof system for a set S is zero-knowledge
if, for input x ∈ S and arbitrary auxiliary input δ (of length at most some
fixed polynomial in the length of x), it satisfies:

Zero-knowledge For every probabilistic polynomial time verifier V ∗, there
is a simulator MV ∗ running in expected probabilistic polynomial time
which is indistinguishable from the real interactive proof system.

31
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A more informal definition of a zero-knowledge proof can be given as
follows: If a statement holds, the prover can convince the verifier of it without
giving away more information. And if the statement does not hold, the prover
succeeds only with a probability smaller than 1.

Of course this probability should be chosen negligible in practice. This
can be achieved by executing the protocol sufficient many times.

To prove the soundness of a protocol, we have to show that there exists
a knowledge extractor. Such an extractor has oracle access to the possibly
malicious prover (ie. the extractor gets the response of the prover to partic-
ular messages it may recieve). The extractor uses the answers of the oracle
machine and extracts in polynomial-time the values that had to be proven
knowledge of by the prover. That shows that the prover had to know the
values on forehand in order to convince the verifier with non-negligible prob-
ability.

To prove a protocol to be zero-knowledge, one has to prove that the
verifier has a simulator that, given the fact that the statement is proven
and given the values received by the verifier, can simulate a transcript of
the protocol that is indistinguishable of a transcript from a real interaction
between the prover and the verifier.

Instead of being perfectly indistinguishable, the transcripts can be sta-
tistically or computationally indistinguishable. Then we call these proofs
statistical cq. computational zero-knowledge.

Definition 4.1.3. If knowledge of certain values is proven by a zero-knowledge
proof, we call that proof a zero-knowledge proof of knowledge.

Zero-knowledge proofs require robustness against arbitrary behavior by
adversaries which can deviate from the protocol. However, a simpler type is
a honest verifier adversary. The verifier then follows the protocol, but at the
end he (or an eavesdropper) may have a transcript.

There are techniques to transform an honest verifier zero-knowledge pro-
tocol into a general zero-knowledge protocol (for example, see [Dam00]).

For precise, but nevertheless very readable introductions on zero-knowledge
proofs of knowledge, we refer to [Gol04] and [DN07].
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4.2 Ali Baba’s Cave

An example of a zero-knowledge proof of knowledge

A clarifying example of a zero-knowledge proof of knowledge is given by
Quisquater and others in an article called “How to Explain Zero-Knowledge
Protocols to Your Children” [QGB90].

Figure 4.1: Ali Baba’s Cave. Peggy has chosen a side and Victor has walked
to the fork. There he shouts from which direction Peggy has to come.

We consider Ali Baba’s circular cave of which Peggy (the prover) knows
the magic word to open the door in the middle, as shown in Figure 4.1.
Assume that Peggy wants to prove her knowledge of the magic word to
Victor (the verifier), but she does not want to give it away.

A solution to this problem is as follows: Victor waits outside the cave,
so he cannot see in which direction Peggy goes. After a few seconds Victor
also goes into the cave and walks to the fork. There he shouts to Peggy from
which side she has to come. If she really knows the magic word, she always
succeeds, otherwise she succeeds only with probability 1/2. Repeating this
several times reduces the probability of success when she does not know the
word.
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4.3 Zero-knowledge proofs in groups with hid-

den order

In 1989 an identification protocol based on the discrete logarithm was given
by Schnorr [Sch89]. This protocol can be used as a zero-knowledge proof of
knowledge of a discrete logarithm. The protocol is given in figure 4.2.

Common inputs: a large prime p;
a generator g of the cyclic group Z∗

p

of order q = p− 1;
a public key X of the prover;

Prover’s inputs: x such that gx = X mod p.

P → V Choose r ∈ [0, q) at random.
Send R = gr mod p to the verifier.

P ← V Choose an integer challenge c from [0, q) at random.
Send c to the prover.

P → V Compute the response s = r + cx mod q.
Send s to the verifier.

Acceptance: The verifier accepts if RXc = gs mod p.

Prover Verifier

r ∈R [0, q)
R = gr mod p

R

−−−−−−−−−−−−→
c ∈R [0, q)

c

←−−−−−−−−−−−−
s = r + cx mod q

s

−−−−−−−−−−−−→
RXc ?

= gs mod p

Figure 4.2: Schnorr Protocol to proof knowledge of a discrete logarithm

The Schnorr protocol is a simple and elegant method to prove knowledge
of a discrete log, but unfortunately cannot be used in idemix: the order of
the group Z∗

n (with n a special RSA-modulus) is unknown to the prover.
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In 2002, Damg̊ard and Fujisaki [DF02] presented a commitment scheme
and a protocol to prove how to open a commitment based on the discrete
logarithm on groups with hidden order. This is an improved version of
a scheme suggested by Fujisaki and Okamoto [FO97]. The commitment
scheme is statistically-hiding and the protocol is honest verifier statistical
zero-knowledge. The set-up phase, commitment scheme and the proof of
knowledge of commitment opening are slightly adapted to the situation in
idemix, and are shown in figures 4.3, 4.4 and 4.5.

Set-Up
The verifier sets up the public key as follows:
he selects a group Z∗

n where n = (2p′ + 1)(2q′ + 1) is a special RSA
modulus and chooses a random elements h ∈ QRn.
He checks if ord(h) = p′q′.
He then chooses α ∈R [0, p′q′) and calculates g = hα ∈ 〈h〉.
The public key of the verifier is (n, g, h).

To prevent adversarial behaviour, the verifier must prove existence
of the discrete logarithm logh g mod n. This can be done by a proof of
knowledge with binary challenges, as described in [DF02].

Figure 4.3: Set-Up of the public key for the (adapted) Damg̊ard-Fujisaki
commitment scheme

Committing to a value
T is a system parameter that gives the interval for the choice of commit-
ments, B is an estimation of the upper bound of the order of Z∗

n, thus
ord(Z∗

n) ≤ 2B.
To make a commitment to a value x ∈ [−T, T ], the prover chooses
y ∈R [0, 2B+ℓn] and sets the commitment

X = gxhy mod n.

Because y is chosen with bit length at least ℓn + log(ord(h)), X is statis-
tically close to uniform in 〈h〉 for any value of x.

Figure 4.4: Making a commitment with the (adapted) Damg̊ard-Fujisaki
commitment scheme
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Common inputs: security parameter ℓc defining the challenge size;
a public key (n, g, h) of the verifier;
a commitment X = gxhy mod n;
parameters B and T as given in Figure 4.4.

Prover’s inputs: x and y.

P → V Choose integers r1 ∈ [0, 2ℓn+ℓcT )
and r2 ∈ [0, 2B+2ℓn+ℓc) at random.
Send R = gr1hr2 mod n to the verifier.

P ← V Choose an integer challenge c from [0, 2ℓc) at random.
Send c to the prover.

P → V Compute the response s1 = r1 + cx and s2 = r2 + cy ∈ Z.
Send s1 and s2 to the verifier.

Acceptance: The verifier accepts if RXc = gs1hs2 mod n.

Prover Verifier

r1 ∈R [0, 2ℓn+ℓcT )
r2 ∈R [0, 2B+2ℓn+ℓc)
R = gr1hr2 mod n

R

−−−−−−−−−−−−→
c ∈R [0, 2ℓc)

c

←−−−−−−−−−−−−
s1 = r1 + cx ∈ Z
s2 = r2 + cy ∈ Z

s1,s2

−−−−−−−−−−−−→
RXc ?

= gs1hs2 mod n

Figure 4.5: (Adapted) Damg̊ard-Fujisaki proof of knowledge of commit-
ment opening
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4.4 Zero-knowledge under concurrent com-

position

To use zero-knowledge proofs of knowledge in practical situations, it is nec-
essary that they preserve security even under concurrent composition. Here
(polynomially) many instances of the proofs are invoked at arbitrary times
and proceed at arbitrary speed.

However, zero-knowledge of proofs of knowledge is proven by showing
that there exists a simulator for the verifier that can simulate a transcript
of the protocol. Even if a simulation can be done for a single execution of
the protocol, it is not necessarily possible for the concurrent version. In fact,
there are examples of proofs that lose their zero-knowledge property under
concurrent composition.

Damg̊ard has shown [Dam00] that some honest-verifier zero-knowledge
protocols, namely the Σ-protocols, can be zero-knowledge even under con-
current composition. Such a Σ-protocol is characterised by the three steps
commitment, challenge and response, like the previous protocols we have
shown.

To make a protocol of that form secure under concurrent composition,
we need a witness hiding commitment scheme. In that case the commitment
is binding to a value for the prover, but the verifier possesses a trapdoor
which allows the verifier to open that commitment to an arbitrary value of
its choosing (ie. cheating by pretending to have committed to this value),
which is called witness indistinguishability.

All protocols presented below are Σ-protocols using a witness hiding com-
mitment scheme, and thus are concurrent composable.

4.5 Zero-knowledge building blocks in idemix

There are three basic building blocks to construct all proofs of knowledge
needed in idemix:

1. Proof of knowledge of a discrete logarithm representation modulo a
composite,
denoted by

PK
{

(α1, . . . , αu) : y = gα1

1 · · · gαu

u

}

.
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2. Proof of knowledge of equality of discrete logarithms on different bases
or in different groups,
denoted by

PK
{

(α, β, γ) : y1 = gα
1 hβ

1 ∧ y2 = gα
2 hγ

2

}

.

3. Proof that a discrete logarithm lies in an interval,
denoted by

PK
{

(α) : y = gα ∧ α ∈ [a, b]
}

.

Details about the notation can be found in section 3.3.1.

4.5.1 Proof of knowledge of commitment opening

In her PhD thesis [Lys02] Anna Lysyanskaya presents a Σ-Protocol Zero-
knowledge Proof of Representation Modulo a Composite. She proves that
it is really a Σ zero-knowledge protocol. Unfortunately she shows only the
protocol and its proof for the basis g and remarks: It is easy to see how to
generalise this protocol and the corresponding extractor to the case where
instead of g, there are several bases (g1, . . . , gu).

In this section we see how to generalise her protocol and its proof for
discrete logarithm representations with several bases.

We now show a proof of knowledge protocol for proving knowledge of a
committed value. We give a Σ-protocol proof of knowledge of representation:
it can be converted into a general zero-knowlegde proof using standard tech-
niques based on trapdoor commitment schemes, described in Section 2.6.1 of
Lysyanskaya’s PhD thesis. All protocols are in the public-parameter model.

Lemma 4.5.1. Under the Strong RSA assumption, the protocol described
in Figure 4.6 is a Σ-protocol zero-knowledge proof of knowledge of witness
(~x, y) := (x1, . . . , xu, y) for the relation

Rn,g1,...,gu,h = {X, (~x, y) : X = gx1

1 · · · gxu

u hy mod n} .

Proof. Let X = gx1

1 · · · gxu
u hy mod n as in the protocol described in Figure

4.6. We have to prove completeness, soundness en zero-knowledge of the
protocol.

Completeness. The completeness is obvious: if the prover follows the
protocol, then

RXc = gr1

1 · · · gru
u hru+1(gx1

1 · · · gxu
u hy)c

= gr1+cx1

1 · · · gru+cxu

u hru+1+cy

= gs1

1 · · · gsu

u hsu+1.
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Common inputs: security parameters ℓr and ℓc;
(n, g1, . . . , gu, h): a public key of the commitment,
where n is a special RSA modulus;
a commitment X = gx1

1 · · · gxu
u hy mod n.

Prover’s inputs: x1, . . . , xu and y.

P → V Choose ℓr-bit r1, . . . , ru+1 at random.
Send R = gr1

1 · · · gru
u hru+1 mod n to the verifier.

P ← V Generate an ℓc-bit challenge c.
P → V Take xu+1 = y.

Compute the response s1 = r1 + cx1, . . . , su+1 = ru+1 + cxu+1.

Acceptance: The verifier accepts if RXc = gs1

1 · · · gsu
u hsu+1 mod n.

Prover Verifier

r1, . . . , ru+1 ∈R [0, 2ℓr)
R = gr1

1 · · · gru
u hru+1 mod n

R

−−−−−−−−−−−−→
c ∈R [0, 2ℓc)

c

←−−−−−−−−−−−−
s1 = r1 + cx1 ∈ Z

...
su+1 = ru+1 + cxu+1

= ru+1 + cy ∈ Z
s1,...,su+1

−−−−−−−−−−−−→
RXc ?

= gs1

1 · · · gsu
u hsu+1 mod n

Figure 4.6: Σ-Protocol Proof of Representation Modulo a Composite
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Zero-knowledge. The Σ zero-knowledge property follows because
suppose the challenge c is fixed in advance. Then the simulator chooses
s1, . . . , su+1 at random, and sets R = gs1

1 · · · gsu
u hsu+1/Xc. If ℓr = ℓc +

max(ℓx, ℓy, ℓn)+ ℓ where ℓ is a security parameter, then choosing s1, . . . , su+1

at random is statistically indistinguishable from the responses he recieves
from the real prover. Therefore, the verifier cannot distinguish the responses
of the prover from just randomly picked values and thus the verifier gets no
information about the values which are hidden in X.

Soundness. The knowledge extraction follows because suppose that
with non-negligible probability over the choice of the challenge c, the prover
causes the verifier to accept. Then the verifier can get two accepting tran-
scripts based on the same R, with challenges c and c′. This results in the

equations RXc = gs1

1 · · · gsu
u hsu+1 and RXc′ = g

s′1
1 · · · g

s′u
u hs′u+1.

Claim 4.5.2. Let δ = c − c′. Then δ | (si − s′i) for all 1 ≤ i ≤ u + 1 under
the Strong RSA assumption.

Proof of claim. Suppose that (n, g) is an instance of the Flexible RSA prob-
lem, with n a special RSA modulus and g a generator of QRn. The ex-
tractor sets up the public key of the commitment by letting α1 = 1 and
choosing random αi’s for 2 ≤ i ≤ u + 1 of length ℓs + 3 and letting the
public key PK = (n, g1, . . . , gu, h), where gi = gαi mod n for 1 ≤ i ≤ u and
h = gαu+1 mod n. This PK is indistinguishable from a random PK since the
αi’s are random and g is a generator.

Now the extractor obtains equations RXc = gs1

1 · · · gsu
u hsu+1 and RXc′ =

g
s′1
1 · · · g

s′u
u hs′u+1. Let S =

∑u+1
i=1 αi(si− s′i), δ = c− c′, and suppose for contra-

diction that δ ∤ (sk − s′k) for some k or that δ ∤ S.

The equations give us that Xδ ≡ gS mod n. Therefore, if δ ∤ S, we break
the Strong RSA assumption by Lemma 2.4.3 and we are done.

So we assume that δ |S and δ ∤ (sk − s′k) for some k. Our goal is now to
show that this case happens with probability at most 1/2.
Note that if δ | (si − s′i) for 2 ≤ i ≤ u + 1, it follows that δ | (s1 − s′1). Thus
we assume that there exists some k ≥ 2 such that δ ∤ (sk − s′k). Now select
such a k.

For 2 ≤ i ≤ u + 1 we write

αi = βi + γi · p′q′ with 0 ≤ βi < p′q′.



4. ZERO-KNOWLEDGE PROOFS 41

Note that βi is uniquely determined as the smallest exponent such that gαi ≡
gβi mod n. Our assumption that δ |S gives us

S = (s1 − s′1) +
u+1
∑

i=2

βi (si − s′i) + p′q′
u+1
∑

i=2

γi (si − s′i) ≡ 0 mod δ.

Note that from the extractor’s point of view, the γi’s are chosen uniformly at
random from at least 2ℓs+3/p′q′ values, and must satisfy the above equation.
By our assumption, this equation has at least one solution, and now we count
the number of solutions.

First, take (x2, . . . , xu+1) := (γ2, . . . , γu+1) mod δ as a particular solution
of

(s1 − s′1) +
u+1
∑

i=2

βi (si − s′i) + p′q′
u+1
∑

i=2

xi (si − s′i) ≡ 0 mod δ.

Then the general solution is the set of tuples (γ2 + ǫ2, . . . , γu+1 + ǫu+1) with
(ǫ2, . . . , ǫu+1) ∈ (Z/δZ)u in the subgroup H given by

u+1
∑

i=2

ǫi (si − s′i) ≡ 0 mod δ.

Because (sk−s′k) 6≡ 0 mod δ, we know that (ǫ2 = 0, . . . , 0, ǫk = 1, 0, . . . , ǫu+1 =
0) /∈ H and therefore H does not contain all elements of (Z/δZ)u. So H is
a strict subgroup of (Z/δZ)u and has index at least 2. Thus the γi’s satisfy
the equation with probability at most 1/2.

So, if δ ∤ (sk − s′k) for some 1 < k < u + 1 , we find with non-neglible
probability a solution to our instance of the Flexible RSA problem, which
contradicts the Strong RSA assumption.

From the claim, it follows that, if we let xi = (si − s′i)/δ for 1 ≤ i ≤ u
and y = (su+1−s′u+1)/δ, then (x1, . . . , xu, y) is a representation of X in bases
g1, . . . , gu and h modulo n. Note that the extracted values are not necessarily
positive.
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4.5.2 Proof of equality

We show a proof of knowledge protocol for proving knowledge and equality
of two or more committed values. We give a Σ-protocol proof of knowledge
of equality.

Lemma 4.5.3. Under the Strong RSA assumption, the protocol described
in Figure 4.7 is a Σ-protocol zero-knowledge proof of knowledge of witness
(x, y1, y2) for the relation

Rn1,g1,h1,n2,g2,h2
= {X1, X2, (x, y1, y2) : X1 = gx

1h
y1

1 mod n1 ∧
X2 = gx

2h
y2

2 mod n2 } .
Proof.

Completeness and Zero-knowledge are proven in the same way as for
Lemma 4.5.1.

Soundness. Let the verifier obtain two accepting transcripts based on
the same R, with challenges c and c′. If we use Claim 4.5.2 with δ = c − c′

it follows that x = (s1 − s′1)/δ and y1 = (s21 − s′21)/δ give a representation
of X1 and x and y2 = (s22 − s′22)/δ give a representation of X2.

4.6 Zero-knowledge interval proofs

This section describes various ways of checking that a committed number
lies in a certain interval. The first observation we will make is that executing
the Damg̊ard-Fujisaki protocol, or in our situation the Σ-protocol Proof of
Representation, already proves that the committed number x1 lies in a larger,
but known interval (as mentioned in [DF02]). After that we look at the exact
interval proof of Boudot. And finally we will show that the less precise results
that directly follow from executing the Σ-protocol Proof of Representation
are sufficient to guarantee security in idemix.

4.6.1 Proof that a committed number lies in an ex-

panded interval

Assume that the prover chooses the hidden number x1 from the interval
I = [−T, T ] = [−2t, 2t]. Also modify the proof of representation (as de-
scribed in Figure 4.6) so that r1 ∈ [0, 2ℓc+ℓT ), with ℓ a security parameter
as decribed in section 3.5. Then after executing the proof of knowledge of
the representation, the verifier will be convinced that x1 lies in an interval
J , where the expansion rate |J |/|I| is equal to 2ℓc(2ℓ + 2), i.e., the interval J
equals

(

−2ℓcT (2ℓ + 2), 2ℓcT (2ℓ + 2)
)

.
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Common inputs: security parameters ℓr and ℓc;
(n1, g1, h1) and (n2, g2, h2) public keys
of the verifier for the commitments,
where n1 and n2 are special RSA moduli;
commitments X1 = gx

1h
y1

1 mod n1 and X2 = gx
2h

y2

2 mod n2.
Prover’s inputs: x, y1 and y2.

P → V Choose ℓr-bit r1, r21, r22 at random.
Send R1 = gr1

1 hr12

1 mod n and R2 = gr1

2 hr22

2 mod n to the verifier.
P ← V Generate an ℓc-bit challenge c.
P → V Compute the response s1 = r1+cx, s21 = r21+cy1, s22 = r22+cy2.

Acceptance: The verifier accepts if R1X
c
1 = gs1

1 hs21

1 mod n1 and R2X
c
2 =

gs1

2 hs22

2 mod n2.

Prover Verifier

r1, r21, r22 ∈R [0, 2ℓr)
R1 = gr1

1 hr12

1 mod n1

R2 = gr1

2 hr22

2 mod n2
R1,R2

−−−−−−−−−−−−→
c ∈R [0, 2ℓc)

c

←−−−−−−−−−−−−
s1 = r1 + cx ∈ Z
s21 = r21 + cy1 ∈ Z
s22 = r22 + cy2 ∈ Z

s1,s21,s22

−−−−−−−−−−−−→
R1X

c
1

?
= gs1

1 hs21

1 mod n1

R2X
c
2

?
= gs1

2 hs22

2 mod n2

Figure 4.7: Σ-Protocol Proof of Equality
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This can be seen as follows:
After executing the proof of representation with x1 of the commitment and
r1 of the first step of the protocol from the correct intervals, the value of
s1 = r1 + cx1 lies in

(

−2ℓcT, 2ℓcT (2ℓ + 1)
)

. We can check this in the last step
of the protocol. That does not tell us that x1 is in the right interval, but we
will explain that it tells us something about a larger interval x1 is in.

From the soundness of the proof of representation it follows that s1 has
to be of the form s1 = r1 + cx1, so we can use that here. If the verifier uses
0 as a challenge, than he gets no information about x1, so we assume that
c ≥ 1.
Using the information that s1 > −2ℓcT gives us

min x1 = min
s1 − r1

c
≥ min(s1 − r1) > −2ℓcT − 2ℓc+ℓT = −2ℓcT (2ℓ + 1) ,

while using that s1 < 2ℓcT (2ℓ + 1) gives us

max x1 = max
s1 − r1

c
≤ max(s1 − r1) < 2ℓcT (2ℓ + 1) .

In the mentioned equations we used that r1 is chosen from the correct
interval, but at this point we are not sure about that. We investigate what
happens if the prover succeeds the proof of representation with values r1 or
x1 outside the correct intervals. Assume that the prover dishonestly proves
that x1 is in the interval

(

−2ℓcT (2ℓ + 1), 2ℓcT (2ℓ + 1)
)

while actually x1 >
2ℓcT (2ℓ + 1). Then the prover has a triple (r1, c, s1) satisfying the equation
s1 = r1 + cx1, lying in the interval

(

−2ℓcT, 2ℓcT (2ℓ + 1)
)

. Now assume that,
instead of c, the challenge was chosen c̃ = c + a, a > 0. Then s̃1 has to be

s̃1 = r1+ c̃x1 = s1+ax1 > −2ℓcT (2ℓ+1)+a·2ℓcT (2ℓ+1) = (a−1)2ℓcT (2ℓ+1).

Or assume that, instead of c, the challenge was chosen c̄ = c − a, a > 0.
Then s̄1 has to be

s̄1 = r1 + c̄x1 = s1−ax1 < 2ℓcT (2ℓ +1)−a ·2ℓcT (2ℓ +1) = (1−a)2ℓcT (2ℓ +1).

For both challenges it holds that if a ≥ 2, the resulting s̃1 or s̄1 will lie
outside the interval. The same argument can be used if x1 < −2ℓcT (2ℓ + 1).
If |x1| > 2ℓcT (2ℓ + 2), then the given r1 only satisfies s1 = r1 + cx1 for a
unique choice of c. Because the probability of guessing c is assumed to be
negligible, the prover cannot prove that x lies in the correct interval if x1

actually is greater than 2ℓcT (2ℓ + 2).
Thus the verifier is convinced that x1 lies in the interval J .
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4.6.2 The interval proof of Boudot

The following proof is due to Boudot [Bou00] and simplified to the case of a
symmetric interval.

We have as input a commitment C = gxhr mod n to an integer x and
now we want to prove the knowledge of x and that x lies in the interval
[−W, W ] = [−2w, 2w].

To show that x ∈ [−W, W ] is the same as to prove that W 2 − x2 ≥ 0, so
W 2 − x2 > −1.

We begin by briefly sketching how this is achieved.
First we commit to x2 with commitment D and prove that it really is

a commitment to the square of x. We calculate DW = gW 2

/D and have to
prove that DW hides a value x̃ = W 2 − x2 equal to or greater than zero.
Now Boudot suggests to scale this up, so we set D̄ = D2S

W for a certain value
S. Also multiply x̃ and r̃ with 2S to obtain x̄ and r̄. Now we have to prove
that D̄ hides a secret x̄ greater than −2S. First we write x̄ as the sum of
the biggest possible square plus a positive small number, ie. x̄ = (x̄1)

2 + x̄2.
Then we hide the values (x̄1)

2, x̄2 in the commitments Ē1, Ē2 and show the
following three facts (indirectly or directly) to Bob:

1. The sum of what Ē1 and Ē2 hide is what D̄ hides.

2. Ē1 hides a square, thus a positive value.

3. Ē2 hides a value with absolute value smaller than 2S.

In the previous paragraph we provided an explanation in words of the
Boudot proof. In this section this will be worked out in detail, so that we
can see what calculation power is needed.

1. Commitment to x2 and proving it
The prover chooses r1 ∈R [0, 2ℓr) and computes r2 = r1 − rx ∈ Z and
D = Cxhr2 mod n. Note that D = gx2

hrx+r2 = gx2

hr1 mod n. To prove
that D hides the square of what C hides, we execute:

PK
{

(α, β, γ) : C = gαhβ ∧D = Cαhγ
}

.

2. Transposing
We have to prove x̃ = W 2 − x2 ≥ 0, so both parties calculate DW =
gW 2

/D(= gW 2−x2

h−r1). We define r̃ = −r1 ∈ (−2ℓr , 0]. The prover has
to convince the verifier that DW hides a secret equal to or greater than
zero.
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3. Scaling up
The basic Boudot proof only gives certainty for x̃ lying in an interval
(−θ,∞). If we scale it up so that −θ > −1, we prove that x̃ ≥ 0,
because x̃ is an integer. We scale DW and x̃ by a factor 2S, where
S = 2(ℓc + ℓ + 2), thus both calculate D̄ = D2S

W and the prover also
calculates x̄ = 2Sx̃ and r̄ = 2S r̃. Now we have to prove that D̄ hides a
secret x̄ > −2S.

4. Decomposition of x̄
The prover computes

x̄1 = ⌊
√

x̄⌋, x̄2 = x̄− x̄ 2
1 .

Computing the floor of a square root can be done efficiently by using
Newton’s Method, see Appendix A. Note that x̄ is decomposed into a
square and a small value (x̄ = x̄ 2

1 + x̄2) where x̄2 satisfies

0 ≤ x̄2 ≤ x̄− (
√

x̄− 1)2 < 2
√

x̄ = 2
√

2Sx̃ ≤ 2
√

2SW 2 = 2(S/2)+1W.

5. Computation of new commitments
The prover selects random values r̄1, r̄2 ∈ [0, 2ℓr) such that r̄1 + r̄2 = r̄.
He computes

E1 = gx̄2
1hr̄1 mod n, E2 = D̄/E1 mod n

He sends E1 to the verifier who also calculates E2 = D̄/E1 mod n. Note
that E2 = gx̄hr̄/gx̄2

1hr̄1 = gx̄2hr̄2 mod n.

6. Validating the commitment to a square
The prover and the verifier execute

PK
{

(α, β) : E1 = gα2

hβ
}

.

This can be done as follows:
The prover chooses r′ ∈R [0, 2ℓr), computes F = gx̄1hr′ and sends F to
the verifier. After that they execute

PK
{

(α, β, γ) : F = gαhβ ∧ E1 = F αhγ
}

.

7. Validating the commitment to a small value
The prover and the verifier execute the Σ-protocol proof of representa-
tion:

PK
{

(α, β) : E2 = gαhβ
}

.
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Because x̄2 ∈ [0, 2S/2+1W ), after executing the proof of knowledge the
verifier can check that

x̄2 ∈
(

−2ℓc(2ℓ + 2)2(S/2)+1), 2ℓc(2ℓ + 2)2(S/2)+1
)

=
(

−2ℓc+ℓ+1+(S/2)+1, 2ℓc+ℓ+1+(S/2)+1
)

=
(

−2(ℓc+ℓ+2)+(S/2), 2(ℓc+ℓ+2)+(S/2)
)

=
(

−2S, 2S
)

,

what had to be proven.

Note: If the interval is not symmetric, it can be made symmetric by
translation. The original version of the Boudot proof uses another method of
proving that x ∈ [a, b]: it proves that values hidden by Ca = ga/C = ga−xhr

and Cb = C/gb = gx−bh−r are positive numbers.

Analysis

To analyse the computing load of this interval proof, we again look at the
load at the prover’s side.
All exponentations are done modulo n of bitlength ℓn. We also mention the
size of the exponent for each exponentiation.

1. Calculation of D = Cxhr2 = gx2

hr1 mod n, 2 exponentiations with
exponents x2 ∈ [0, W 2] and r1 ∈ [0, 2ℓr).
The proof of knowledge: 4 exponentiations with exponents in [0, 2ℓr).

2. Calculation of DW is not necessary for the prover, knowledge of the
exponents x̃ and r̃ is sufficient.

3. Calculation of D̄ is not necessary for the prover, knowledge of the
exponents x̄ and r̄ is sufficient.

5. Calculation of E1 = gx̄2
1hr̄1 mod n , 2 exponentiations with exponents

x̄2
1 ∈ [0, 2SW 2] and r̄1 ∈ [0, 2ℓr). Calculation of E2 is not necessary for

the prover, knowledge of the exponents x̄2 and r̄2 is sufficient.

6. Calculation of F = gx̄1hr′ mod n, 2 exponentiations with exponents
x̄1 ∈ [0, 2(S/2)W ) and r′ ∈ [0, 2ℓr).
The proof of knowledge: 4 exponentiations with exponents in [0, 2ℓr).

7. The proof of knowledge: 2 exponentiations with exponents in [0, 2ℓr).
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So we see that we have to do 16 exponentiations. Of that exponentiations,
13 have a ℓr-bit exponent, 1 has a 2w-bit exponent, 1 has a 2(w + ℓc + ℓ+2)-
bit exponent, 1 exponentiation has an approximately (w + ℓc + ℓ + 2)-bit
exponent. If we take w = ℓx − 1 = 159 and ℓc = 80, we obtain:

ℓr = ℓc + ℓs + ℓ = 80 + 2386 + 160 = 2626

2w = 318

w + ℓc + ℓ + 2 = 159 + 80 + 160 + 2 = 402

2(w + ℓc + ℓ + 2) = 804

As described in appendix B, a 2048-bit exponentiation takes approximately
174 ms. And because the time a exponentiation takes depends quadratically
on the bitlenght, we see that a Boudot interval proof on the user’s master key
takes about (13 · (2626/2048)2 + (318/2048)2 + (804/2048)2 + (402/2048)2) ·
174 ms ≈ 4 seconds.

4.6.3 A smart way of checking intervals in idemix

The analysis in the previous section shows us that a Boudot interval proof
needs a huge amount of calculation power. It is however possible to garantuee
security in idemix without doing explicit interval proofs.

The expanded interval proof from Section 4.6.1 can be used to give a
sufficient proof of security in idemix. For security of the signing algorithm,
we require that the value of xU lies in [a, b]. So we ask the user to choose an
xU in a smaller interval such that after executing the zero-knowledge proof
it certainly is showed that x ∈ [a, b].

Assume we execute the proof of representation with xU ∈ [0, 2ℓx) from
the pseudonym and a random value r ∈ [0, 2ℓc+ℓ+ℓx) in the first step of the
protocol. Then the value of s = r + cxU lies in the interval [0, 2ℓc+ℓx(2ℓ +1)).

We can easily see that after executing the proof representation, the verifier
is convinced of the fact that

xU ∈
(

−2ℓc+ℓx+ℓ, 2ℓc+ℓx(2ℓ + 1)
)

.

This is the same as saying that the verifier is convinced that

xU + 2ℓc+ℓx+ℓ ∈
(

0, 2ℓc+ℓx(2ℓ+1 + 1)
)

.
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A translation of xU does not affect the security of the signing algorithm.
So if we prove security of the signature for the message space

(

0, 2ℓc+ℓx(2ℓ+1 + 1)
)

⊂
(

0, 2ℓc+ℓx+ℓ+2
)

=
(

0, 2ℓm
)

⊂
[

0, 2ℓm
)

,

and if the prover has xU ∈ [0, 2ℓx), the verifier is always convinced that the
prover owns a secure signature.

To have an effective message space of 160 bits, we thus have to choose
ℓm = ℓc + ℓx + ℓ + 2 = 80 + 160 + 80 + 2 = 322.

In the same way we can achieve that the exponents eUO lie in the interval
[2ℓe−1, 2ℓe). Namely, if the issuing organisation always chooses the signature
exponent eUO ∈ [2ℓe−1 + 2ℓe−2 − 2ℓe−ℓc−ℓ−3, 2ℓe−1 + 2ℓe−2 + 2ℓe−ℓc−ℓ−3], after
execution of the proof of representation, the verifier will be convinced that
eUO ∈ (2ℓe−1, 2ℓe).

This can be done as follows: for the random exponent re corresponding
to the exponent eUO in the proof of representation, choose re ∈R [0, 2ℓe−3).
Now instead of proving knowledge of eUO, prove knowledge of ẽ := eUO −
(2ℓe−1 + 2ℓe−2). Note that ẽ ∈ [−2ℓe−ℓc−ℓ−3, 2ℓe−ℓc−ℓ−3].

In the verification step of the protocol, the verifier checks that

s̃ = re + c · ẽ ∈
(

−2ℓe−ℓ−3, 2ℓe−3 + 2ℓe−ℓ−3
)

=
(

−2ℓe−ℓ−3, 2ℓe−3(2−ℓ + 1)
)

.

From this it follows that

ẽ ∈ [min(s̃− re), max(s̃− re)]

=
(

−2ℓe−ℓ−3 − 2ℓe−3, 2ℓe−3(2−ℓ + 1)
)

=
(

−2ℓe−3(2−ℓ + 1), 2ℓe−3(2−ℓ + 1)
)

⊂
(

−2ℓe−2, 2ℓe−2
)

.

So we obtain that

eUO ∈
(

2ℓe−1, 2ℓe−1 + 2ℓe−2 + 2ℓe−2
)

=
(

2ℓe−1, 2ℓe
)

.
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Chapter 5

Distribution of idemix on a
smart card and terminal

As described in the first chapter, integrating a smart card in idemix has
some advantages in security and portability. However, the limited comput-
ing power and storage capacities of the smart card put constraints on the
feasibility of an implementation where all calculations are done on the smart
card. A way to solve this is to use the resources on the terminal in which
the smart card is inserted. In this chapter we will explore in which way the
calculations and storage have to be distributed over the smart card and a
terminal.

5.1 Distributing information and calculations

First we have to decide how to distribute the information and calculations
over the smart card and the terminal. By analysing idemix we find that there
are four blocks of information:

1. The user’s master key xU .

2. The pseudonym PUO (or PUI) of the user with an issuer.

3. The pseudonym PUV of the user with a verifier.

4. The credential triple (cUO, eUO, rUO).

The relations between these blocks restrict the possible choices for a dis-
tribution. For example, giving the master key xU to the terminal makes it
useless to hide pseudonyms or credentials which are bound to this key.
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This leads to the following reasonable distributions:

1. The smart card gives all information to the terminal.
In this case the smart card gives the user’s master key, the needed
pseudonyms and needed credentials to the terminal. Therefore, the
terminal can do all calculations, the smart card is only a storage device.

2. The smart card only keeps the master key secret.
Now the smart card gives the needed pseudonyms and credentials to
the terminal, but keeps the user’s master key secret. This implies that
the terminal can do a lot of calculations with respect to the pseudonyms
and credentials, but the calculations directly related to the master key
have to be done on the smart card.

The smart card only gives the needed credentials to the ter-
minal.
This leads to almost the same distribution as in the previous possibility,
as the terminal can easily calculate the pseudonym from the credential
(ie. PUO = ceUO

UO /dOhrUO

O ).

3. The smart card only gives the pseudonym with the verifier to
the terminal.
This distribution is useful when the terminal is owned by the verifier,
since the verifier obtains no linking information.

4. The smart card keeps everything secret.
In this case all calculations have to be done by the smart card. The
terminal is merely used as a communication device between the smart
card and the organisation.
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5.2 Analysis of distributions

In this section we will explore in detail the advantages and disadvantages of
the mentioned distributions. We will also see how this effects the protocols
from Chapter 3.

5.2.1 The smart card gives all information to the ter-
minal

It is possible to give all information to the terminal. As the terminal has
much more calculation power than the smart card, this will be the solution
with fastest execution of the protocol. However, the smart card has no more
use than being a portable storage device, because all ‘secrets’ are told to the
terminal. Therefore, this is not what we are looking for.

5.2.2 The smart card only keeps the master key secret

This distribution is interesting: the most sensitive information, that is, the
user’s master key, remains secret. All other information is given to the ter-
minal, so that all calculations which do not directly involve the master key
can be done by the terminal.

Because the pseudonym of the user with a verifier as well as the pseudonym
and credential with a certain issuer will be known by the terminal, this dis-
tribution leaks linking information to the terminal.

This distribution requires a modification of the functions VerifyCred and
VerifyCredOnNym. We will treat this in Section 5.3.

5.2.3 The smart card only gives the pseudonym with

the verifier to the terminal

This distribution will be interesting in case the terminal is owned by the
verifier. Because the pseudonym with the verifier is already known to the
verifier, this will not leak linking information.

However, if we look at the most complex function, i.e., VerifyCredOnNym,
the pseudonym PUV only appears in the proof of knowledge as the part

PK
{

(β, η) : P 2
UV = (a2

V )β(b2
V )η mod nV

}

. Unfortunately, to execute this

part of the proof of knowledge, the smart card is also involved as PUV hides
the user’s master key. So this distribution gives no benefit compared to the
distribution where the smart card keeps everything secret.
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5.2.4 The smart card keeps everything secret

In case the smart card keeps everything secret and only uses the terminal as
an interface, the workload is on the smart card.

If the terminal is managed by a third party and may gain totally no
linking information, the smart card and organisation can communicate over
an encrypted tunnel. This can be achieved by standard techniques which are
beyond the scope of this thesis.

Modular exponentiations require by far the most calculation power. There-
fore, we will use them as a measure for calculation costs. The following table
gives the number of needed modular exponentiations per action in idemix:

action number of exponentiations

FormNym 4
GrantCred 4
VerifyCred 10
VerifyCredOnNym 11

From the data on state-of-the-art smart card technology (see Appendix B)
we see that one exponentiation takes about 174 milliseconds, thus the most
costly operation VerifyCredOnNym would take approximately 2 seconds.

If we use a smart card which needs about 1.5 seconds to do one exponen-
tiation, then VerifyCredOnNym takes approximately 17 seconds. In that case,
we can not expect users to wait while a verification is done on the smart
card.

5.2.5 Interesting distributions

In Table 5.1 it can be found which of the properties of idemix (as listed in
Chapter 3) hold for each distribution described above.

Recapitulating this section, we have found two interesting distributions:

1. The smart card keeps only the master key secret.

2. The smart card keeps everything secret.

The second of these possibilities merely implements the whole user-side of
idemix on a smart card. The first one will be worked out in the next section.
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Unlinkable pseudonimity
The organisation cannot link a pseudonym
to an identity

x x x

The organisation cannot link two different
pseudonyms to each other

x x

The organisation cannot link two different
uses of the same credential

x x

Pseudonyms are bound to a user x x x x

Users cannot exchange credentials without
giving other sensitive information

x x x x

Unforgeable pseudonymous
credential granting
The organisation can grant credentials to
users

x x x x

The organisation only needs to know a user
by pseudonym to grant a credential

x x x x

The identity of a user remains secret to the
organisation

x x x

All other pseudonyms of a user remain se-
cret to the organisation

x x

Zero-knowledge credential
verification
A user can show ownership of a pseudonym
to the organisation
... without revealing his identity x x x
... without revealing other pseudonyms x x
A user can show ownership of a credential
to the organisation
... without revealing his identity x x x
... without revealing other pseudonyms x x

Table 5.1: The properties of idemix under certain distributions if the organ-
isation owns the terminal
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5.3 The smart card only keeps the master key

In case the smart card only keeps the master key, but discloses the pseudonyms
and credentials to the terminal, some unlinkability properties vanish. Table
5.2 shows what is disclosed with each action of idemix.

The terminal ... The organisation ...

FormNym

... learns the Pseudonym ... learns the Pseudonym

... does not learn the Master Key ... does not learn the Master Key
GrantCred

... learns the Pseudonym ... learns the Pseudonym

... learns the Credential pair ... learns the Credential pair

... does not learn the Master Key ... does not learn the Master Key
VerifyCred

... learns the Pseudonym ... learns the Pseudonym

... learns the Credential pair ... does not learn the Credential
pair

... does not learn the Master Key ... does not learn the Master Key
VerifyCredOnNym

... learns the Pseudonym with the
Issuer

... does not learn the Pseudonym
with the Issuer

... learns the Pseudonym with the
Verifier

... learns the Pseudonym with the
Verifier

... learns the Credential pair ... does not learn the Credential
pair

... does not learn the Master Key ... does not learn the Master Key

Table 5.2: Disclosure of information if the smart card keeps only the user’s
master key secret

Of course, the right column of the table only holds if the organisation has
no direct access to the terminal.

As we can see in the table, with GrantCred, VerifyCred and VerifyCredOnNym

the terminal learns which pseudonym is coupled to a credential, and with
VerifyCredOnNym the terminal can also link two pseudonyms to each other.
The terminal never learns the user’s master key.

To see what happens to the calculations, we have to distribute all calcu-
lations and data carefully over the smart card and terminal.
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Distribution of calculations and data

Now we look at the functions FormNym, GrantCred, VerifyCred and
VerifyCredOnNym.

FormNym

For pseudonym generation the protocol remains unchanged. The smart card
chooses a random value sUO and calculates PUO = axU

O bsUO

O mod nO.
The user has to prove that he knows the master key xUO and the hiding

exponent sUO which are bound to the shown pseudonym. This is done by a
zero-knowledge proof of knowledge. Because all information that is needed
to do so remains secret on the smart card, the terminal is used only as an
interface for the smart card.

Therefore, the smart card has to do 2 exponentiations for the pseudonym
generation and another 2 exponentiations for the proof of knowledge.

GrantCred

Again the zero-knowledge proof of knowledge requires 2 exponentiations to
be done on the smart card.

Issuing a credential is done by the organisation. The terminal receives
the credential triple (cUO, eUO, rUO) and stores it or gives it to the smart card
to let the card store this triple.

If the terminal can be trusted, verification of the credential triple by the
user can be done on the terminal.

VerifyCred

When starting (and ending) this protocol, the smart card has the user’s
master key and the value sUO which together form the pseudonym PUO. The
terminal knows the pseudonym PUO and the credential triple (cUO, eUO, rUO)
such that

ceUO

UO = PUO brUO

O dO mod nO,

but does not know the values of xU and sUO. VerifyCred, as introduced in
Section 3.4.5, is adapted to this situation as follows, where S is the Smart
card, T is the Terminal and V is the Verifier:

1. T chooses r1, r2 ∈ [0, 22ℓn), computes A = cUOhr1

O mod nO and B =
gr2

O hr1

O mod nO and sends the results to V .
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2. T and S prove knowledge of the exponents in the pseudonym and
knowledge of a signature by executing

PK
{

(α, β, γ, δ, ǫ, ζ, ξ) : d2
O = (A2)α(

1

a2
O

)β(
1

b2
O

)γ(
1

h2
O

)δ ∧

B2 = (h2
O)ǫ(g2

O)ζ ∧ 1 = (B2)α(
1

h2
O

)δ(
1

g2
O

)ξ ∧

β ∈ [0, 2ℓx) ∧ γ ∈ [0, 2ℓn) ∧ α ∈ [2ℓe−1, 2ℓe)
}

.

Because the terminal cannot prove knowledge of β and γ, he passes
this to the smart card. How this can be done for PK{(α, β, γ, δ) : d2

O =
(A2)α( 1

a2
O

)β( 1
b2O

)γ( 1
h2

O

)δ } is shown in Figure 5.1.

We will not work out the complete proof of knowledge in detail. But we
describe what has to be altered in the protocol to achieve the desired
distribution.

In the commitment phase the values of rα, rδ, rǫ, rζ and rξ are chosen
at random from the correct intervals by the terminal. However, the
random values of rβ and rγ are chosen by the smart card and the value
RS = (1/a2

O)rβ(1/b2
O)rγ mod nO is given to the terminal. Then the

terminal can calculate all the needed commitments and gives them to
the verifier.
The verifier replies by giving a challenge.
The responses sα, sδ, sǫ, sζ and sξ are calculated by the terminal. But
again, the responses for sβ and sγ have to be calculated by the smart
card and given to the terminal. Then the terminal has all the values
needed to convince the verifier that the user knows all values of which
knowledge had to be proven.

We see that in the commitment phase of the proof of knowledge, the
smart card has to do 2 exponentiations.

It can easily be seen that the zero-knowledge proofs of knowledge remain
secure under this distribution, because the game between the terminal and
the smart card can be seen as a stand-alone zero-knowledge proof of knowl-
edge.
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Smart Card Terminal Verifier

rβ ∈R [0, 2ℓc+ℓ+ℓx)
rγ ∈R [0, 2ℓr)
RS = ( 1

a2
O

)rβ( 1
b2O

)rγ

mod nO
RS

−−−−−−−−−−−−→
rα ∈R [0, 2ℓc+ℓ+ℓe−1)
rδ ∈R [0, 2ℓr)

RT = (A2)rαRS( 1
h2

O

)rδ

mod nO
RT

−−−−−−−−−−−−→
c ∈R [0, 2ℓc)

c

←−−−−−−−−−−−−
c

←−−−−−−−−−−−−
sβ = rβ + c · xU ∈ Z
sγ = rγ + c · sUO ∈ Z

sβ ,sγ

−−−−−−−−−−−−→
sα = rα + c · eUO ∈ Z
sδ = rδ + c · r1 · eUO ∈ Z

sα,sβ,sγ ,sδ

−−−−−−−−−−−−→
RT · (d2

O)c ?
=

(A2)sα( 1
a2

O

)sβ

·( 1
b2O

)sγ ( 1
h2

O

)sδ

mod nO

Figure 5.1: Distribution of PK{(α, β, γ, δ) : d2
O = (A2)α( 1

a2
O

)β( 1
b2O

)γ( 1
h2

O

)δ }
when the master key remains secret
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VerifyCredOnNym

When starting (and ending) this protocol, the smart card has the user’s mas-
ter key xU , the value sUI that together with xU forms the pseudonym PUI and
the value sUV that together with xU forms the pseudonym PUV . The termi-
nal knows the pseudonyms PUI , PUV and the credential triple (cUI , eUI , rUI)
such that

ceUI

UI = PUI brUI

I dI mod nI ,

but does not know the values of xU , sUI and sUV . VerifyCredOnNym is
adapted to this situation as follows, where S is the Smart card, T is the
Terminal and V is the Verifier:

1. T chooses r1, r2 ∈ [0, 22ℓn), computes A = cUIh
r1

I mod nI and B =
gr2

I hr1

I mod nI and sends the results to V .

2. T and S prove knowledge of the exponents in the pseudonym and
knowledge of a signature by executing

PK
{

(α, β, γ, δ, ǫ, ζ, ξ, η) : d2
I = (A2)α(

1

a2
I

)β(
1

b2
I

)γ(
1

h2
I

)δ ∧

B2 = (h2
I)

ǫ(g2
I )

ζ ∧ 1 = (B2)α(
1

h2
I

)δ(
1

g2
I

)ξ ∧

P 2
UV = (a2

V )β(b2
V )η mod nV ∧

β ∈ [0, 2ℓx) ∧ γ ∈ [0, 2ℓn) ∧ α ∈ [2ℓe−1, 2ℓe)
}

.

Because the terminal cannot prove knowledge of β, γ and η, he passes
this to the smart card. Therefore, in the commitment phase the values
of rα, rδ, rǫ, rζ and rξ are chosen at random from the correct intervals
by the terminal. However, the random values of rβ, rγ and rη are chosen
by the smart card and the values RS,PUI

= (1/a2
I)

rβ(1/b2
I)

rγ mod nI and
RS,PUV

= (1/a2
V )rβ(1/b2

V )rγ mod nI are given to the terminal. Then the
terminal can calculate all the needed commitments and gives them to
the verifier.
The verifier replies by giving a challenge.
The responses sα, sδ, sǫ, sζ and sξ are calculated by the terminal. But
again, the responses sβ, sγ and sη have to be calculated by the smart
card and given to the terminal. Then the terminal has all the values
needed to convince the verifier that the user knows all values of which
knowledge had to be proven.

We see that in the commitment phase of the proof of knowledge, the
smart card has to do 4 exponentiations.
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When using this distribution, the following number of exponentiations has
to be done on the smart card, assuming that the terminal can be trusted:

action number of exponentiations

FormNym 4
GrantCred 2
VerifyCred 2
VerifyCredOnNym 4

The most expensive functions FormNym and VerifyCredOnNym now only
take 4 · 174 ms ≈ 0.7 seconds. If we use a smart card that needs about 1.5
seconds per exponentiation, these functions each take about 6 seconds.

5.4 Analysis and preferences

To investigate which distribution is preferred, we first have to distinguish
three different possible terminal owners: the user, the organisation or a third
party.

A terminal owned by the user can be a digital wallet, for example, a cell
phone equipped with a SIM-card containing the user’s master key. Another
possibility is a card interface on the user’s personal computer.

In this situation we can expect that the terminal will not leak linking
information to organisations. Therefore the smart card can give the needed
pseudonyms and credentials to the terminal. The best solution is to do this
just before the pseudonyms and credentials are needed, and let the terminal
delete them right afterwards. To protect the user’s master key, the smart
card keeps this key secret.

If the organisation (issuer and/or verifier) owns the terminal, then for
the user there is no difference between the terminal and the organisation. In
that case some properties of idemix vanish. Table 5.1 gives an overview of
the remaining properties of idemix for the various distributions.

To preserve the unlinkability of pseudonyms in idemix, we must choose to
keep everything secret on the smart card. It is not possible to gain some ben-
efits on calculation time by giving some calculations to the terminal, without
giving non-blinded secret values.
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A possibility which we have not discussed, is to blind the secret values
xU , sUO, PUI and/or the credential triple (cUO, eUO, rUO) and perform calcu-
lations with these blinded values on the terminal. Whether we can efficiently
and securely outsource calculations in this way remains a questions for fur-
ther research.

It also is possible that the terminals are provided by a third party and
are used to let the smart card communicate with the organisation. In that
case the user cannot expect the terminal to be secure. So the smart card has
to do all the calculations. In order to communicate securily, the user and the
organisation can encrypt their communication when it is transported over
this terminal.

If the user trusts the terminal provider to hide his linking information,
the user can choose to keep his master key on the smart card and give other
needed information to the terminal.



Chapter 6

Conclusions

In the previous chapter we have investigated in which way idemix can be
implemented in a system with a smart card and a terminal. This section
gives a small summary of the progress we made on researching this question.
We also make some conclusions on the results of this research. Moreover, we
will list some suggestions for further research.

6.1 Conclusions

While studying the properties and protocols of idemix it became clear that
it is necessary for security to choose all values from the correct intervals and
thus integrating a smart card in idemix has to be done with a lot of care.

As described in Section 4.6.3, we found that there are no exact interval
proofs needed in the standard protocols of idemix. This saves a lot of calcu-
lation power.

If the terminal is provided by the organisation, we unfortunately have to
conclude that it is not possible to reduce the weight of calculations that have
to be done by the smart card without reveiling linking information.

The function VerifyCredOnNym takes about 2 seconds on the quickest
smart card. If we use a smart card which needs about 1.5 seconds to do one
exponentation, then VerifyCredOnNym takes approximately 17 seconds.

On the other hand, if the user owns the terminal, we can choose to give the
pseudonyms and credentials that are needed in a transaction to the terminal
and leave the necessary calculations to the terminal as well.
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If only the user’s master key remains secret on the terminal, for the func-
tions FormNym and VerifyCredOnNym only 4 exponentiations have to be done
on the smartcard. With the quickest smart card from Appendix B it takes no
more than a second. With other mentioned smart cards it will take more or
less 6 seconds. Because the needed exponentiations only indicate something
about the processing times, we have to mention here that we don’t know
exactly how an implementation on the smart card affects this.

We may conclude that idemix can be implemented in a system which
makes use of a smart card and a terminal, where the user’s master key is
contained on and handled by the card.

6.2 Further research

While doing this research, some questions arose which could not be treated in
this thesis. Therefore we mention here some suggestions for further research.

First we notice that for the signature scheme given by Lysyanskaya (Sec-
tion 3.2) it is necessary that the hiding exponent of the commitment is chosen
uniformly at random. The proof of security makes use of this fact. We have
neither found a different proof of security which would make the requirement
of randomness superfluous, nor any argument that shows that it is not secure
to use non-random hiding exponents. If it were possible to safely use non-
random hiding exponents, the exponent rUO in the credential triple would
be superfluous.

We also found that combining the zero-knowledge proofs of knowledge
building blocks is a complicated job that has to be done very precisely. En-
dre Bangerter, who has done his PhD with Jan Camenisch, already states in
a slide show [Ban07] that it would be useful to develop an automatic protocol
generator for zero-knowledge proofs of knowledge. A complicating factor is
that the resulting protocols must remain secure when combining the basic
blocks.

In the previous chapter, we saw that it is impossible to give information
to the terminal if that terminal is owned by the organisation, without leaking
linking information. However, it is not clear yet whether we can move some
calculation load to the terminal. It may be possible that the terminal can
do some calculations in an oblivious way by hiding the input or output.
Whether or not it is possible to securely outsource computations is a question
for further research.
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Appendix A

Calculating square roots of
large numbers

In the interval proof of Boudot the calculation of the floor of a square root
is used. To calculate a square root with high precision a lot of memory and
calculation power is needed, luckily we only need the integer part. We will
see that using Newton’s method, this can be done efficiently.

xn+1 xn

y = x2 − a

Figure A.1: Illustration of Newton’s method for finding a root of x2 − a.

Newton’s method is an algorithm for finding approximations x0, x1, x2, . . .
to a zero of a real-valued function f . It uses slopes of a tangent at points of
the graph of f . In each iteration step n, we take as the next approximation
xn+1 the zero of the tangent of f(x) at x = xn. This can be written as

xn+1 = xn −
f(xn)

f ′(xn)
.
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Although there are functions and initial values x0 for which this method
doesn’t converge, in the case of finding square roots this method will lead to
a good approximation in a few steps.

For finding a square root of a, we look for a root of x2 − a = 0. In this
case, the iteration takes the form

xn+1 = xn −
x2

n − a

2xn
=

xn

2
+

a

2xn
.

Because we are looking for the floor of the square root, we can take the floor
of xn

2
+ a

2xn
in each iteration step. The iteration is finished when the outcomes

don’t change anymore.

Analysis

The choice of the starting value is important, choosing a starting value close
to the square root we are looking for gives (almost) quadratic convergence.
However, choosing a value far away from the square root gives a linear con-
vergence.

This can be seen as follows: First, we examine the case that we start close
to the square root:

x0 = (1 + ǫ)
√

a

x1 =
x0

2
+

a

2x0

=

(

1 + ǫ

2
+

1

2(1 + ǫ)

)√
a

=

(

2 + 2ǫ + ǫ2

2 + 2ǫ

)√
a

=

(

1 +
ǫ2

2 + 2ǫ

)√
a

≈
(

1 +
ǫ2

2

)√
a.

Hence close to the square root, the convergence is quadratic in the distance
factor.
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Now we examine the case that we start with a much larger value than
the square root:

x0 = 2k
√

a with k ≫ 0

x1 =
x0

2
+

a

2x0

=
(

2k−1 + 2−k−1
)√

a

≈
(

2k−1
)√

a, so using induction

xi ≈
(

2k−i
)√

a as long as k ≫ i.

For a positive starting value much smaller than the square root we see

x0 = 2−k
√

a with k ≫ 0

x1 =
x0

2
+

a

2x0

=
(

2−k−1 + 2k−1
)√

a

≈
(

2k−1
)√

a

and we are in the same situation as for a value much larger than the square
root.

We conclude that it is efficient to choose a starting value near to the end
value, and therefore we choose as the starting value a number with half of
the bitlength as the square has, i.e.,

x0 = 2⌊1/2 log a⌋.
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Experiments

Experiments in Mathematica confirm this analysis. For a n-bit square it
takes approximately n/2 + 2⌊1/2 log a⌋ − 1 steps if chosen 1 as the starting
value, while it only takes approximately log n steps if chosen 2⌊1/2 log a⌋ as the
starting value.

The output of Mathematica is as follows:

In[1]:= bitlength = 2^8;

In[2]:= NewtonSqrt@square_, bitlength_D := H
xn = 0; xnplus1 = 2^Floor@bitlength�2D; step = 0;
While@xn != xnplus1,
xn = xnplus1;
step++;
Print@"step ", step, " approximation: ", xnD;
xnplus1 = Floor@Hxn�2L + Hsquare�H2*xnLLDD;
xnL

In[3]:= kwadraat = Random@Integer, 80, 2^bitlength - 1<D

Out[3]= 108469909753218786787785557085221449543600643038174105790950632356808008674950

In[4]:= wortel = NewtonSqrt@kwadraat, bitlengthD

step 1 approximation: 340282366920938463463374607431768211456

step 2 approximation: 329523391146859269186018050648028689422

step 3 approximation: 329347750262452926672607764603574045507

step 4 approximation: 329347703427883310729530942110137530106

step 5 approximation: 329347703427879980697336576254727124771

step 6 approximation: 329347703427879980697336576237892159322

Out[4]= 329347703427879980697336576237892159322



Appendix B

Modular arithmetic on a smart
card

In order to know how much calculation power is needed for the actions in
idemix, we need to understand some methods to do binary calculations. In
this appendix we survey binary addition, substraction, multiplication, divi-
sion and exponentiation. Exponentiation can be optimised in different ways
and we look at some of this methods to approximate the time a smart card
needs to do such an exponentiation.

B.1 Addition, subtraction and multiplication

Binary addition is done similar to decimal addition, namely as follows:
Write the numbers to add under each other and right align them. For each
position from the right to the left: if both are zero, then the outcome is zero,
if one digit is a zero and one digit is a one, then the outcome is one and if
both are one, then the outcome is zero and we put a 1 in the carry. If we
had also something in the carry, a zero becomes a one, and a one becomes a
zero with 1 in the carry. Do this for every position.

Example:

1

1 0 0 1
0 1 0 1 +
1 1 1 0
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Binary subtraction is almost done in the same way: write the numbers
to subtract under each other and right align them. For each position from
the right to the left: if both are zero or both are one, then the outcome is
zero, if only the upper digit is a one, then the outcome is one, if only the
lower digit is a one, then the outcome is also one, but there is put a one
in the carry to subtract later. If we had also something in the carry, a one
becomes zero, a zero becomes a one, with one in the carry.

Example:

1

1 0 0 1
0 1 0 1 -
0 1 0 0

Binary multiplication can be done as follows: write the numbers to
multiply under each other and right align them. For each position of the
second number from the right to the left: if the digit is a one, put the upper
number padded with a number of zero’s on the right as much as the position
of the lower digit under each other. Finally add all this numbers by binary
addition.

Example:

1 0 0 1
0 1 0 1 *
1 0 0 1

1 0 0 1 0 0 +
1 0 1 1 0 1

Modular binary addition and subtraction can easily be done by the
following rules:

a + b mod n =

{

a + b if a + b < n
a + b− n if a + b ≥ n

a− b mod n =

{

a− b if a− b ≥ 0
a− b + n if a− b < 0

Modular binary multiplication is done by binary multiplication and
then calculating the reminder of dividing by n.
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B.2 Multiplicative inverses

Inverses in Zn can be computed using the extended Euclidian algorithm. This
algorithm can be easily found in the mathematical literature, for example in
[MOV96].

Assume we want to calculate a−1 for some a ∈ Zn. If and only if
gcd(a, n) = 1, the inverse a−1 mod n does exist. Use the extended Euclidian
algorithm to find integers x and y such that ax + ny = gcd(a, n) = 1, then
ax = 1 mod n, thus a−1 is given by x.

B.3 Modular exponentiation

Repeated square-and-multiply
A simple and efficient method for modular binary exponentiation is called
repeated square-and-multiply. To calculate be, observate that e can be written
as

e =

k
∑

i=0

ei2
i,

with ei ∈ 0, 1 for all i, from which follows that

be =

k
∏

i=0

(b2i

)ei.

Observing this, we construct the next algorithm:

1. Set result = 1 and B = b.

2. For i from 0 to k do the following:

2.1 If ei = 1 then set result = B · result mod n.

2.2 Set B = B2 mod n.

3. Return result.

Chinese Remainder Theorem
Normally used on smart cards is the Chinese Remainder Theorem (CRT) to
calculate modular exponentiations, especially signing with RSA. Using CRT
is only possible if the factors of the modulus are known, which is not the case
in our situation. Therefore using CRT is not possible.
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B.4 Complexity of modular operations

The following table (also found in [MOV96]) shows the bit complexity of the
mentioned modular operations:

Operation Bit complexity

Modular addition a + b mod n O (log n)
Modular subtraction a− b mod n O (log n)
Modular multiplication a · b mod n O ((log n)2)
Modular inversion a−1 mod n O ((log n)2)
Modular exponentiation ak mod n, k < n O ((log n)3)

Table B.1: Bit complexity of modular operations

As we see, modular exponentiation is the most expensive operation by far.
To be more concrete: if we expect half of bits in the exponent to be 1, we
have to calculate log n squares and do 1/2 log n multiplications. For a 2048
bit modulus, an exponentiation will take approximately 3072 multiplications.

While analysing the mathematical operations in idemix, we have to con-
centrate on exponentiations.

B.5 State-of-the-art smart cards

To see what is the state-of-the-art in smart card technology, we give an
overview of smart card specifications of some well known smart card manu-
facturers.

Infineon SLE 88P family
Clock speed 66 MHz
Memory RAM 32 Kbyte

EEPROM / Flash 1 Mbyte
RSA signing 1024 CRT 14 ms

2048 CRT 58 ms

NXP (Philips) SmartMX P5CN144/P5CC144/P5CD144
Clock speed 30 MHz
Memory ROM 264 Kbyte

RAM 6 Kbyte
EEPROM 144 Kbyte

RSA signing 1024 CRT 99 ms
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Gemalto GemsafeXpresso 64K (April ’07)
Type Java CardTM

Memory EEPROM / Flash 64 Kbyte
RSA signing 1024 250 ms

2048 1400 ms

STMicroelectronics ST22N256(-A) (June ’06)
Card type Java CardTM

Clock speed 33 MHz
Memory ROM 394 Kbyte

RAM 16 Kbyte
EEPROM / Flash 256 Kbyte

RSA signing 1024 CRT 79 ms
1024 (w/o CRT) 242 ms
2048 CRT 485 ms
2048 (w/o CRT) 1700 ms

Table B.2: Overview of smart card specifications

Because we can not use the Chinese Remainder Theorem, we have to
multiply the CRT times roughly by 3 to obtain the real exponentiation times
needed by these processors. If the exponentiation times are given for 1024-
bit exponents, we have to multiply it by 4 to obtain the times for 2048-bit
exponentations. That gives us the following times per manufacturer for a
2048-bit exponentiation:

Manufacturer Exponentiation time

Infineon 174 ms
NXP 1188 ms
Gemalto 1400 ms
STMicroelectronics 1700 ms

We see that the Infineon card is the fastest with approximately 174 ms
for an ordinary 2048-bit exponentiation.
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Appendix C

List of symbols

symbol value meaning
log log2 binary logarithm
∈R (uniformly) random integer

[a, b] interval in Z, including the endpoints
(a, b) interval in Z, excluding the endpoints
Zn integers modulo n
Z∗

n group of units in Zn

φ(n) Euler totient function
QRn group of quadratic residues in Z∗

n

U the User
O the Organisation (can be I or V )
I the Issuer
V the Verifier

PKO (nO, aO, bO, dO) public key of the Organisation
SKO (pO, qO) secret key of the Organisation

(cUO, eUO, rUO) see 3.4.4 credential for the User at O
xU User’s master key
sUO hiding exponent in PUO

PUO a
xU

O b
sUO

O mod nO pseudonym of the User at O
ℓn see 3.5 bitlength of the modulus n
ℓx see 3.5 bitlength of the user’s master key xU

ℓ see 3.5 a security parameter
ℓs ℓn + ℓx + ℓ bitlength of the hiding exponent sUO

ℓx see 3.5 bitlength of the user’s master key xU

ℓc see 3.5 bitlength of the challenge
ℓe ℓx + 2 bitlength of the signature exponent e

PK
{

(α, . . . ) : . . .
}

zero-knowledge proof of knowledge
?
= equality test
ℓf ℓs + 2ℓc + ℓ− t + 1 see 4.6.1
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